NASA Logo, National Aeronautics and Space Administration

National Aeronautics and Space Administration

NASA's Arctic-Boreal Vulnerability Experiment

ABoVE




 

Most Recently Published 20 ABoVE Citations:

Liu, Z., Kimball, J. S., Ballantyne, A. P., Parazoo, N. C., Wang, W. J., Bastos, A., Madani, N., Natali, S. M., Watts, J. D., Rogers, B. M., Ciais, P., Yu, K., Virkkala, A., Chevallier, F., Peters, W., Patra, P. K., Chandra, N. 2022. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nature Communications. 13(1). doi: 10.1038/s41467-022-33293-x ( Kimball (TE 2018)  Natali (TE 2014)  Parazoo (IDS 2016)  Rogers (CARBON 2016)  Watts (NIP 2017) )
Elder, M., Phillips, C. A., Potter, S., Frumhoff, P. C., Rogers, B. M. 2022. The costs and benefits of fire management for carbon mitigation in Alaska through 2100. Environmental Research Letters. 17(10), 105001. doi: 10.1088/1748-9326/ac8e85 ( Rogers (TE 2014) )  [quad chart]
Liu, Z., Kimball, J. S., Ballantyne, A. P., Parazoo, N. C., Wang, W. J., Bastos, A., Madani, N., Natali, S. M., Watts, J. D., Rogers, B. M., Ciais, P., Yu, K., Virkkala, A., Chevallier, F., Peters, W., Patra, P. K., Chandra, N. 2022. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nature Communications. 13(1). doi: 10.1038/s41467-022-33293-x ( Kimball (TE 2018)  Natali (TE 2014)  Parazoo (IDS 2016)  Rogers (CARBON 2016)  Watts (NIP 2017) )  [quad chart]
Liu, Z., Kimball, J. S., Ballantyne, A. P., Parazoo, N. C., Wang, W. J., Bastos, A., Madani, N., Natali, S. M., Watts, J. D., Rogers, B. M., Ciais, P., Yu, K., Virkkala, A., Chevallier, F., Peters, W., Patra, P. K., Chandra, N. 2022. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nature Communications. 13(1). doi: 10.1038/s41467-022-33293-x ( Kimball (TE 2018)  Natali (TE 2014)  Parazoo (IDS 2016)  Rogers (CARBON 2016)  Watts (NIP 2017) )  [quad chart]
Dashti, H., Smith, W. K., Huo, X., Fox, A. M., Javadian, M., Devine, C. J., Behrangi, A., Moore, D. J. 2022. Underestimation of the impact of land cover change on the biophysical environment of the Arctic and Boreal Region of North America. Environmental Research Letters. doi: 10.1088/1748-9326/ac8da7 ( Moore (TE 2018) )
Webb, E. E., Liljedahl, A. K., Cordeiro, J. A., Loranty, M. M., Witharana, C., Lichstein, J. W. 2022. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nature Climate Change. doi: 10.1038/s41558-022-01455-w ( Webb (FINESST 2019), 1 citations )  [quad chart]
Kyzivat, E. D., Smith, L. C., Garcia-Tigreros, F., Huang, C., Wang, C., Langhorst, T., Fayne, J. V., Harlan, M. E., Ishitsuka, Y., Feng, D., Dolan, W., Pitcher, L. H., Wickland, K. P., Dornblaser, M. M., Striegl, R. G., Pavelsky, T. M., Butman, D. E., Gleason, C. J. 2022. The Importance of Lake Emergent Aquatic Vegetation for Estimating Arctic-Boreal Methane Emissions. Journal of Geophysical Research: Biogeosciences. 127(6). doi: 10.1029/2021JG006635 ( Butman (TE 2018) )  [quad chart]  [What We're Learning]
Sweeney, C., Chatterjee, A., Wolter, S., McKain, K., Bogue, R., Conley, S., Newberger, T., Hu, L., Ott, L., Poulter, B., Schiferl, L., Weir, B., Zhang, Z., Miller, C. E. 2022. Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain. Atmospheric Chemistry and Physics. 22(9), 6347-6364. doi: 10.5194/acp-22-6347-2022 ( McKain (TE 2016), 1 citations )
Zhang, Y., Piao, S., Sun, Y., Rogers, B. M., Li, X., Lian, X., Liu, Z., Chen, A., Penuelas, J. 2022. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change. doi: 10.1038/s41558-022-01374-w ( Rogers (CARBON 2016), 1 citations )  [quad chart]
Macander, M. J., Nelson, P. R., Nawrocki, T. W., Frost, G. V., Orndahl, K. M., Palm, E. C., Wells, A. F., Goetz, S. J. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters. 17(5), 054042. doi: 10.1088/1748-9326/ac6965 ( Goetz (TE 2018) )  [quad chart]  [What We're Learning]
Turner, K. W., Wolfe, B. B., McDonald, I. 2022. Monitoring 13 years of drastic catchment change and the hydroecological responses of a drained thermokarst lake. Arctic Science. doi: 10.1139/AS-2020-0022 ( Turner-K (2007) )
Zhang, Y., Woodcock, C. E., Chen, S., Wang, J. A., Sulla-Menashe, D., Zuo, Z., Olofsson, P., Wang, Y., Friedl, M. A. 2022. Mapping causal agents of disturbance in boreal and arctic ecosystems of North America using time series of Landsat data. Remote Sensing of Environment. 272, 112935. doi: 10.1016/j.rse.2022.112935 ( Woodcock (TE 2014), 3 citations )
Phillips, C. A., Rogers, B. M., Elder, M., Cooperdock, S., Moubarak, M., Randerson, J. T., Frumhoff, P. C. 2022. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Science Advances. 8(17). doi: 10.1126/sciadv.abl7161 ( Rogers (TE 2014), 1 citations )  [quad chart]
Yang, J. C., Magney, T. S., Albert, L. P., Richardson, A. D., Frankenberg, C., Stutz, J., Grossmann, K., Burns, S. P., Seyednasrollah, B., Blanken, P. D., Bowling, D. R. 2022. Gross primary production (GPP) and red solar induced fluorescence (SIF) respond differently to light and seasonal environmental conditions in a subalpine conifer forest. Agricultural and Forest Meteorology. 317, 108904. doi: 10.1016/j.agrformet.2022.108904 ( Frankenberg (TE 2018), 2 citations )
Ludwig, S. M., Natali, S. M., Mann, P. J., Schade, J. D., Holmes, R. M., Powell, M., Fiske, G., Commane, R. 2022. Using Machine Learning to Predict Inland Aquatic CO 2 and CH 4 Concentrations and the Effects of Wildfires in the Yukon-Kuskokwim Delta, Alaska. Global Biogeochemical Cycles. 36(4). DOI: 10.1029/2021GB007146 ( Ludwig (FINESST 2019), 1 citations )
Zona, D., Lafleur, P. M., Hufkens, K., Bailey, B., Gioli, B., Burba, G., Goodrich, J. P., Liljedahl, A. K., Euskirchen, E. S., Watts, J. D., Farina, M., Kimball, J. S., Heimann, M., Gockede, M., Pallandt, M., Christensen, T. R., Mastepanov, M., Lopez-Blanco, E., Jackowicz-Korczynski, M., Dolman, A. J., Marchesini, L. B., Commane, R., Wofsy, S. C., Miller, C. E., Lipson, D. A., Hashemi, J., Arndt, K. A., Kutzbach, L., Holl, D., Boike, J., Wille, C., Sachs, T., Kalhori, A., Song, X., Xu, X., Humphreys, E. R., Koven, C. D., Sonnentag, O., Meyer, G., Gosselin, G. H., Marsh, P., Oechel, W. C. 2022. Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems. Scientific Reports. 12(1). doi: 10.1038/s41598-022-07561-1 ( Kimball (TE 2014), 3 citations )
Koch, J. C., Bogard, M. J., Butman, D. E., Finlay, K., Ebel, B., James, J., Johnston, S. E., Jorgenson, M. T., Pastick, N. J., Spencer, R. G. M., Striegl, R., Walvoord, M., Wickland, K. P. 2022. Heterogeneous Patterns of Aged Organic Carbon Export Driven by Hydrologic Flow Paths, Soil Texture, Fire, and Thaw in Discontinuous Permafrost Headwaters. Global Biogeochemical Cycles. 36(4). doi: 10.1029/2021GB007242 ( Striegl (TE 2014) )  [quad chart]
Koch, J. C., Bogard, M. J., Butman, D. E., Finlay, K., Ebel, B., James, J., Johnston, S. E., Jorgenson, M. T., Pastick, N. J., Spencer, R. G. M., Striegl, R., Walvoord, M., Wickland, K. P. 2022. Heterogeneous Patterns of Aged Organic Carbon Export Driven by Hydrologic Flow Paths, Soil Texture, Fire, and Thaw in Discontinuous Permafrost Headwaters. Global Biogeochemical Cycles. 36(4). doi: 10.1029/2021GB007242 ( Striegl (TE 2014) )  [quad chart]
Huemmrich, K. F., Campbell, P., Vargas Z, S. A., Sackett, S., Unger, S., May, J., Tweedie, C., Middleton, E. 2022. Leaf-level chlorophyll fluorescence and reflectance spectra of high latitude plants. Environmental Research Communications. 4(3), 035001. doi: 10.1088/2515-7620/ac5365 ( Huemmrich (TE 2018) )
Yi, Y., Chen, R. H., Kimball, J. S., Moghaddam, M., Xu, X., Euskirchen, E. S., Das, N., Miller, C. E. 2022. Potential Satellite Monitoring of Surface Organic Soil Properties in Arctic Tundra From SMAP. Water Resources Research. 58(4). doi: 10.1029/2021WR030957 ( Kimball (TE 2018) )