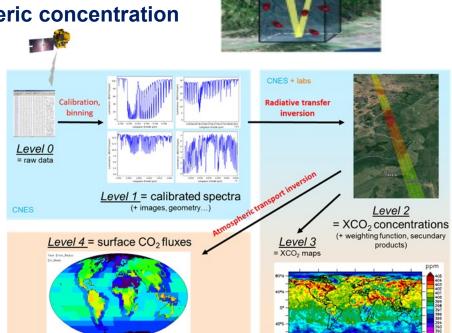


MicroCarb, first European program for CO2 monitoring: nearing development conclusion before launch

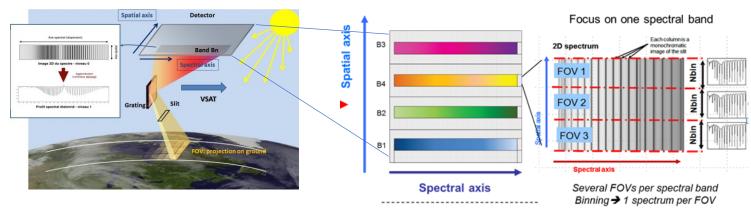
IWGGMS-17 June 14-17 2021

Denis JOUGLET, Philippe LANDIECH, François-Marie BREON And the MicroCarb team



MicroCarb Mission reminder

- Science mission
 - Primary objective : CO2 natural fluxes
 - Demonstration for CO2 local emission with the city mode
- Measurement of the column integrated CO2 atmospheric concentration
- Passive VNIR & SWIR spectrometer
 - CO2 : 1.6 μm & 2.04 μm
 O2 : 0.76 μm & 1.27 μm
- Carried on microsatellite < 200kg
- Orbit SSO 649 km 22h30 LTAN 25 day cycle
- Life time: 5 years

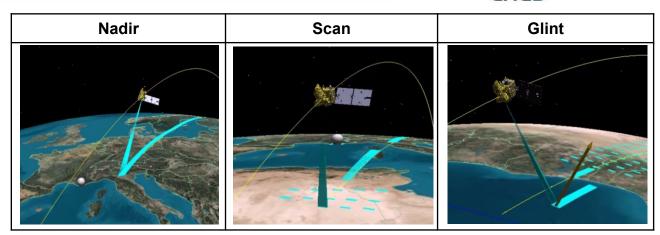


Instrument basics

- Compact: 1 telescope, 1 spectrometer, 1 NGP detector for 4 spectral bands
- Instrument <60kg, <55W</p>
- 3 FOV (swath 13.5km), each FOV ~4.5x9 km², every 1.3s
- Grating spectrometer
- High spectral resolution and high SNR
- ACT scanning mirror
- Embedded imager (one red band, 120mx150m) for cloud detection and geolocation refinement
- ➤ All ACT pixels data + intermediate readings sent to ground → intra FOV information

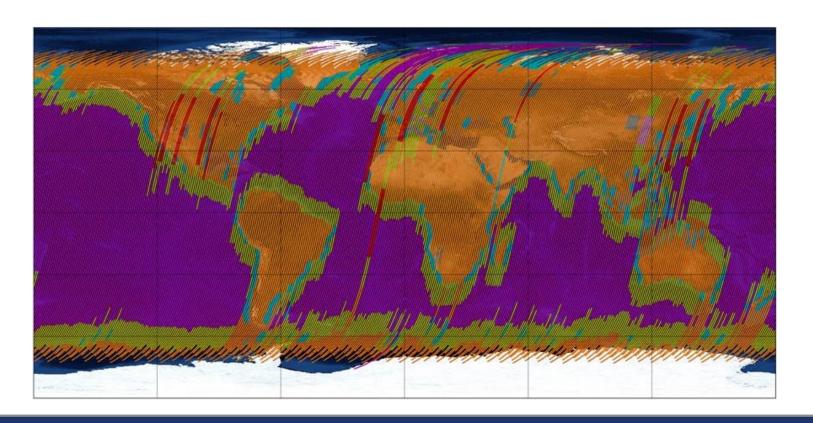
2D image of the each spectrum on detector All bands on a unique NGP detector 1000pixels

17.8 km	8.9 km	Sondeur FOV #1	Sondeur FOV #0 Vaat	Sondeur FOV #2	3 FOV de 40.0 km² IFOV sondeur 0.58 km ALT x 13.5 km ACT
			3 x 4.5 km		IFOV imageur 2.4 km ALT x 27.5 km ACT
ALT ***	4		27 km		


	B1	B2	В3	B4
λmin (nm)	758.281	1596.772	2023.018	1264.630
λcenter (nm)	763.500	1607.900	2037.100	1273.400
λmax (nm)	768.817	1618.946	2051.116	1282.191
Sampling @ λcenter	2.85	2.84	2.81	2.91
Resolution @ λcenter	26040	26146	26420	25520
SNR@Lmin per channel	61 à 106	121 à 163	54 à 66	81 à 118
SNR@Lmean per channel	194 à 320	394 à 497	174 à 211	288 à 400
SNR@Lmax per channel	494 à 753	1086 à 1309	886 à 1016	843 à 1092

Observation modes

- Science nominal modes
 - Nadir (lands)
 - Scan (lands to decorrelate footprints)
 - Glint (ocean)
 - Offnadir target
- Probatory modes
 - City
 - Region
- Calibration modes
 - Target (L2 validation)
 - Calibration : sun, lamp, shutter, cold space, moon...
 - Limb for 1.27µm airglow


City	Region	Target
Zone d'Acquisition Zone d'Acquisition Zone d'Acquisition Zone d'Acquisition	2410 km	Target Mode observes surface zenith angles between ±75°

Mission planning

- Example of mission plan during one cycle (25 days)
- Large flexibility thanks to scanning mirror and platform agility

Organization

archiving and dissemination

Data production,

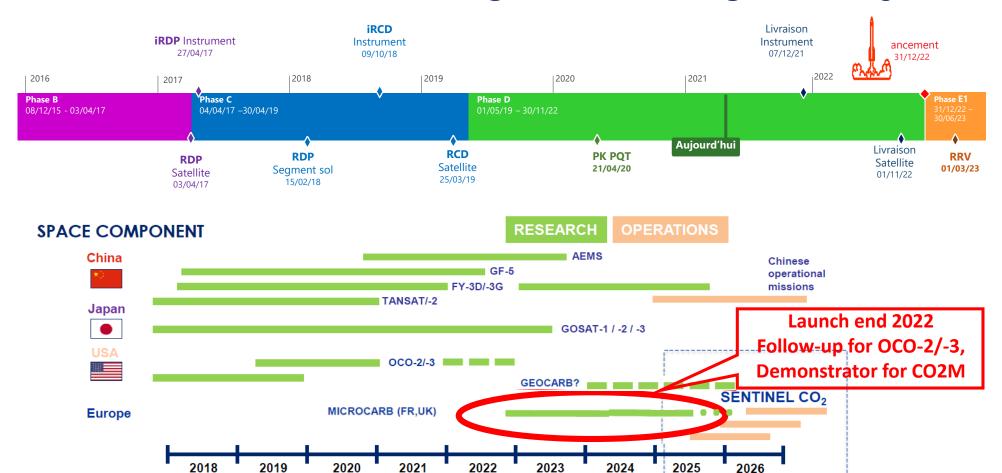
Launch service

System design and development Satellite design an development Instrument specification L1&L2 Processing definition Mission performances Calibration and validation Operations

Instrument development qualification and calibration

Satellite Assembly integration and Test

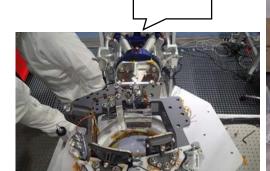
Mission Advisory Group


Last year progress

A very busy year since last IWGGMS-16 !!!

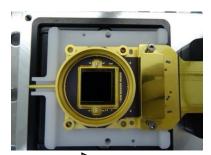
- * COVID 19 particularly impacted the distant platform AIT in UK, ...
- Detector performances characterization on prototypes then on Flight Models 1 & 2 (spare), several defects evidenced
 - Remanence effect
 - Several seconds for recovery after a strong light transition, non-linear effect → strong impact at L2
 - Choice a detector low sensitive to this effect (FM2)
 - Implementation of a diffuse optical background light added to mitigate any ageing effect
 - History effect : long-term remanence, to be modelled and corrected
 - Recombination: low flux loss of linearity, to be characterized then compensated by model
 - ROIC effects
- Delay in instrument delivery schedule, but now back on track!
- Launch scheduled end 2022 on a VEGA-C charter flight
- ❖ Then a 12 month Cal/Val phase split in 2: 6 months for L1 Calibration then 6 months for L2 Validation prior to open access to MicroCarb data

MicroCarb will enforce the CO2 global monitoring continuity

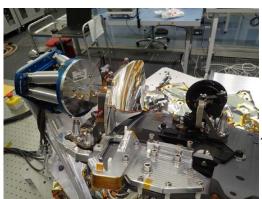


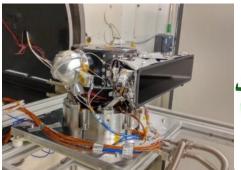
Instrument AIT Activities

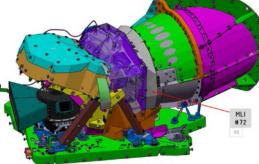
- All equipment received
- Separate Telescope and Spectrometer integrations underway with alignments and individual performances checks
- Before Instrument complete integration, need to finalize NGP detector characterization plan at 150 K in all Bands
 critical path
- Then, main step will be Instrument Thermal Vaccum test in with a thorough qualification / calibration test plan applied: 40 days identified, including sunlight test



Spectro

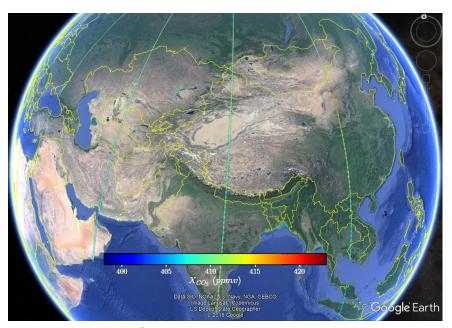


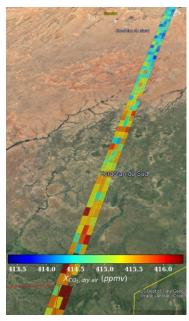


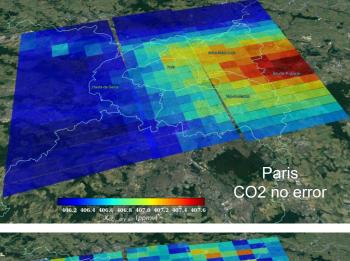

NGP detector FM

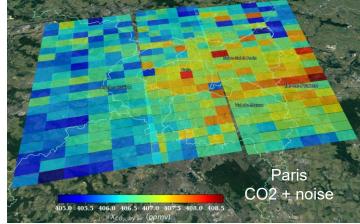
PCS

Telescope








Performance orbital simulator

- Our orbital performance simulator is now ready for the performance budget
- Simulates L1 and L2
- This gives access to spatial scales of errors (to discrimintate random error and regional bias)
- Gain matrix mode & retrieval mode
- Is used also for demo products, ground segment tests and Cal/Val preparation

Orbital mode (nadir)

Zoom

City mode

2021 L2 performance budget

Methodology

- Mostly based on orbital simulator, > half of the defects coded inside
- 1 sigma budget, quadratic summation
- Raw budget without calval improvement nor bias characterization
- No EOF here

Main results

- Random error is largely compliant with spec < 1.5 ppm
- Raw regional biais is not compliant with spec < 0.2 ppm
 - L1 algorithms still under improvement
 - Aerosols and spectroscopy are dominant but will be improved
 - The 1.27µm O2 band (B4) is still to be fully exploited
- →In-depth ground calibration
- →In-depth L1 & L2 calval
 - For L2: massive statistics with TCCON, EM27 and models

Budget before calval and bias correction

	CO2 ra	andom	error	CO2	CO2
Performance Item		(ppm)	regional	global	
				bias	bias
	Max	Med	Min	1sig	
L1 radiometry					
Radiometric noise (SNR)	0.94	0.35	0.15		
Absolute gain residual				0.32	0.24
Band to band gain residual				0.25	0.02
Channel to channel gain residual				0.04	0.01
Dark signal residual				0.14	0.11
Dark signal channel to channel residual				0.03	0.05
Non-linearity residual				0.09	0.05
Instrumental polarization residual				0.15	0.25
Straylight	0.25	0.25	0.25		
Detector persistence	0.30	0.30	0.30	0.10	
L1 spectrometry					
Spectral shift				0.35	2.00
Limited knowledge of the ISRF (uniform scenes)	0.07	0.07	0.07	0.32	0.15
Limited knowledge of the ISRF (heterogenous scenes)	0.10	0.10	0.10		
L1 geometry					
Limited knowledge of geolocation					
Intra-band misregistration		0.14	0.14		
Inter-band misregistration	0.25	0.25	0.25		
Limited knowledge of VZA	0.20	0.20	0.20	0.20	
Inter band differential VZA	0.15	0.15	0.15	0.15	
FOV spread function shape					
Limited knowledge of the FOV spread function					
L2 processing					
Limited a priori knowledge of CO2				0.01	0.02
Limited knowledge of weather analysis and DEM		0.25	0.07		
Spectroscopy misknowledge				0.30	2.50
Impact of aerosols (incl. apriori)				0.70	
Limited knowledge of the solar spectrum					
Unscreened clouds		0.20	0.20	0.10	
Impact of 1.27 μm airglow	0.22	0.22	0.22		
Impact of 0.76 µm vegetation fluorescence				0.03	0.05
Impact of 4AOP calculation accuracy				0.20	0.67
Approximation of gain matrix formalism (added)				0.30	
Mission Requirement (nnm)) 5 - 1 5		01-02	

Mission Requirement (ppm)	0.5 - 1.5			0.1 - 0.2	
Random error budget (ppm)	1.24	0.76	0.66		
Regional bias budget (ppm)				1.37	
Global bias budget (ppm)					3,29

The 1.27µm O2 band is very promising!

Simulations in orbital simulator

- No noise
- Airglow perfectly retrieved
- 4ARTIC baseline is to invert the 4 spectral bands
 - But B4 is much closer to the CO2 bands
 - Some experiments performed here
- Reminder of 4ARTIC scheme for aerosols:
 - 3 retrieved parameters [ln(AOD(σ₀)), k, z_{aero}]
 - Prior from CAMS
 - AOD(σ) = AOD(σ_0)(σ/σ_0)^k
 - Gaussian vertical distribution with mean altitude z_{aero}
 - SSA=0.98, g=0.8 (soon taken from CAMS)

O2	Direct	Inverse	A priori for aerosols	Moy (ppm)	Std (ppm)	Conclusions
0.76 & 1.27	Realistic profiles	No aerosol		0.114	1.732	Without aerosol in inverse
0.76	Realistic profiles	No aerosol		0.116	1.917	 B1+B4: bad results B1 alone is worse B4 alone improves a lot, but not enough
1.27	Realistic profiles	No aerosol		0.083	0.831	→ Need for an aerosol parametrization
0.76 & 1.27	Realistic profiles	4ARTIC scheme	Truth-like	-0.243	0.562	The 4ARTIC aerosols parametrization implies a regional biais of 0.6 ppm → Need for parametrization imrpovement
0.76 & 1.27	Realistic profiles	4ARTIC scheme	Truth-like + large random perturbation	-0.214	1.059	A priori aerosol uncertainty degrades the results → Need for a good aerosol prior
0.76	Realistic profiles	4ARTIC scheme	Truth-like + large random perturbation	-0.475	1.611	With aerosol parametrization and large aerosol prior uncertainty: - removing B1 improves the results
1.27	Realistic profiles	4ARTIC scheme	Truth-like + large random perturbation	-0.213	0.414	- Removing B4 dergades the results - High interest of B4!

Conclusion

- Additional partnership are put in place at European level to place MicroCarb in an European frame and contribute to prepare future operational systems (Copernicus)
- Instrument and satellite AIT started despite COVID 19 situation
- Processors still under improvement, payload ground segment close to end of development
- Complete and consolidated performance budget with promising results (simulated data and OCO-2 real data)
- Launcher main passenger looked for
- MicroCarb heading for a launch end 2022-beginning 2023

Thank you for your attention!