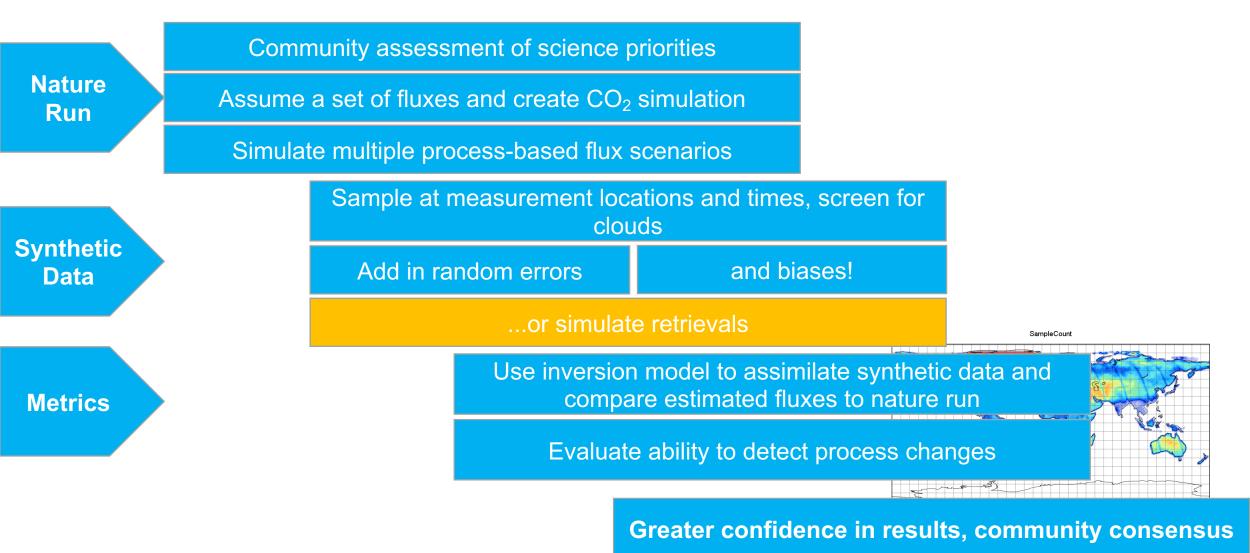


Moving towards a Global GHG Constellation: Flux Constraints in the Presence of Intercalibration and Transport Uncertainty

Sean Crowell¹, Lesley Ott², Abhishek Chatterjee^{2,3}, Chris O'Dell⁴, Sourish Basu^{2,5}, David Baker⁴, Kevin Bowman⁶, Junjie Liu⁶, Helene Peiro³, Steven Pawson², Benjamin Poulter², Peter Somkuti⁴, Andrew Schuh⁴, Dave Schimel⁶, Berrien Moore III³, and Piers Setlers²

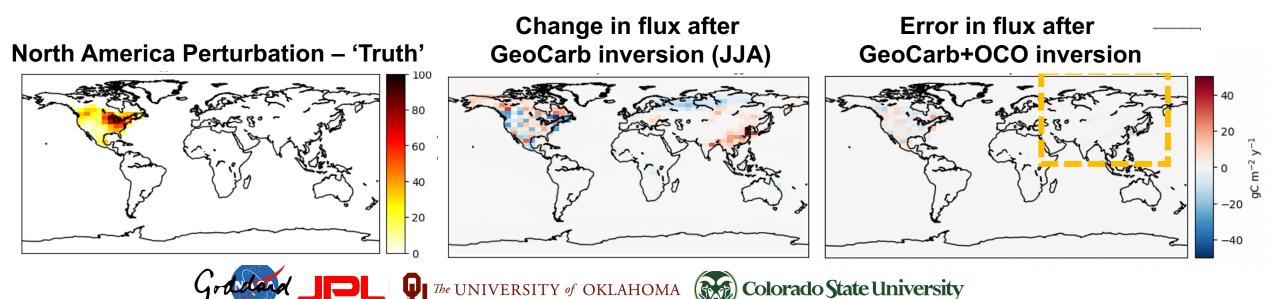
¹University of Oklahoma, ²NASA Goddard Space Flight Center, ³USRA, ⁴Colorado State University, ⁵University of Maryland, ⁶Jet Propulsion Laboratory

Upcoming missions


Satellite, Instrument (Agencies)	CO ₂ CH ₄	Swath/FOV	Sample	2002		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019 2	020	2021	2022	2023	2024	2025	2026	2027	2028
ENVISAT SCIAMACHY (ESA)	• •	960 km	30x60 km ²																						
GOSAT TANSO-FTS (JAXA-NIES-MOE)	• •	3 pts	10.5 km (d)																						
OCO-2 (NASA)	•	10.6 km	1.3x2.3 km ²																						
GHGSat-D - Claire (GHGSat)	•	12kmx12 km	0.0004 km ²																						
TanSAT (CAS-MOST-CMA)	•	20 km	1x2 km ²																						
Sentinel 5P TROPOMI (ESA)	•	2600 km	7x7 km ²																						
Feng Yun 3D GAS (CMA)	• •	7 pts	10 km (d)											no	data re	eported									
GaoFen-5 GMI	• •	5-9 pts	10 km (d)																						
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES)	• •	5 pts	10.5 km (d)																						
OCO-3 (NASA)	•	11 km	4 km ²																						
GHGSat C1/C2 - Iris, Hugo (GHGSat)	•	12x12 km	33mx33m														\equiv								
MetOp Sentinel-5 series (Copernicus)	•	2670 km	50 km ²																						
MethaneSAT (EDF)	•	200 km	1 km ²												5		POP 4								
MicroCarb (CNES)	•	13.5 km	40 km ²												~				A CAN						
Feng Yun 3G (CMA)	• •	100 km	< 3 km ²															-							
GeoCarb (NASA)	• •	2800 km	20 km ²														. 7	The second							
GOSAT GW (JAXA-MOE-NIES)	• •	400 km	4 km ²															Y						1111	
MERLIN (DLR-CNES)	•	100 m	0.14 km (w)																						
CO2M (Copernicus)	• •	3x250 km	2x2 km ²															5	m						
					CO ₂ +0	CH ₄		CO2		CH4	1111	Extend	ded Mi	ssion	3	Plan	ed 300	600 900	Ph	1800 2100	2400 2700	nent			

Crisp et al., 2018 CEOS White Paper

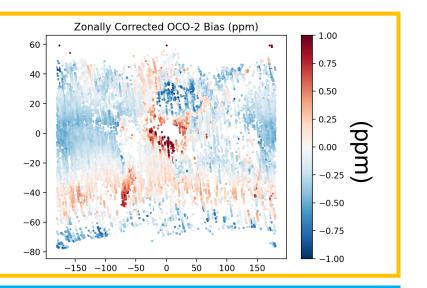
Using models to plan future missions

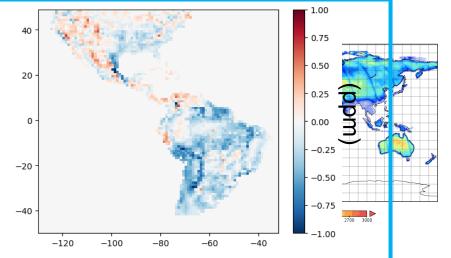


The UNIVERSITY of OKLAHOMA (Colorado State University

Experimental Design – Last Time

- Simulate CO₂ at 0.5° assuming different flux perturbations with GEOS-5
- Sample as GeoCarb and OCO-2
- Assimilate pseudo-data with TM5-4DVAR to recover flux perturbations
- Previously:
 - Perfect transport (using TM5 simulated pseudo-data)
 - Random observational error only
 - Main result: flux error resulting from sampling bias mitigated with multiple sensors

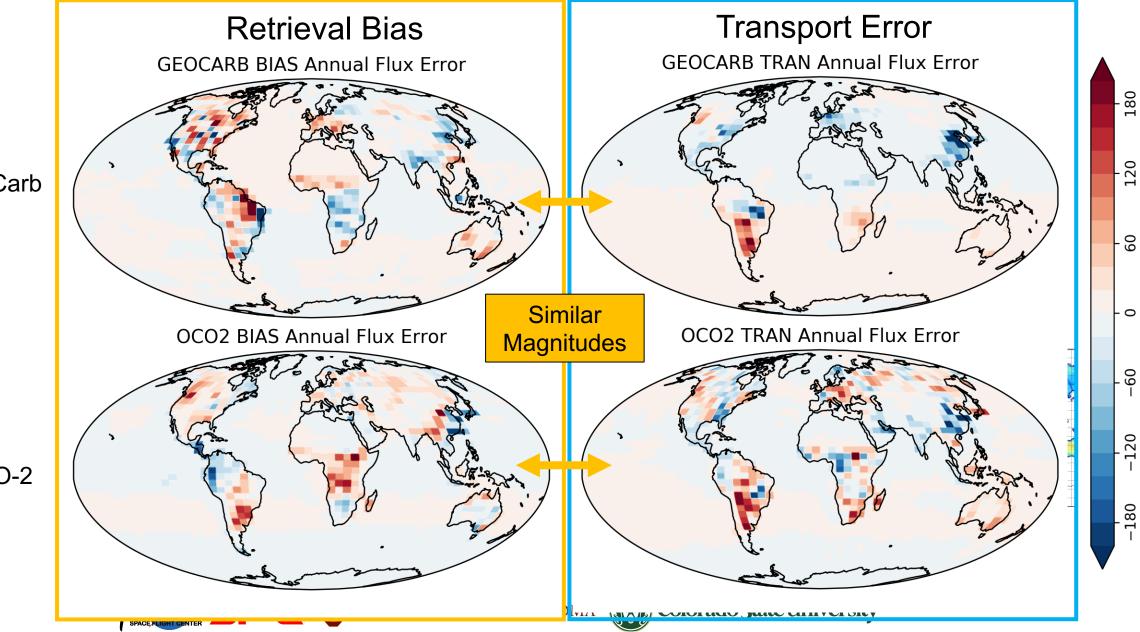

Experimental Design - Update


Systematic Errors: OCO-2 differences from in situ constrained models as a multilinear regression with

- Surface Albedo
- Aerosol loading
- Viewing/solar geometry
- Surface altitude
- Surface pressure Variations

Atmospheric Transport Errors

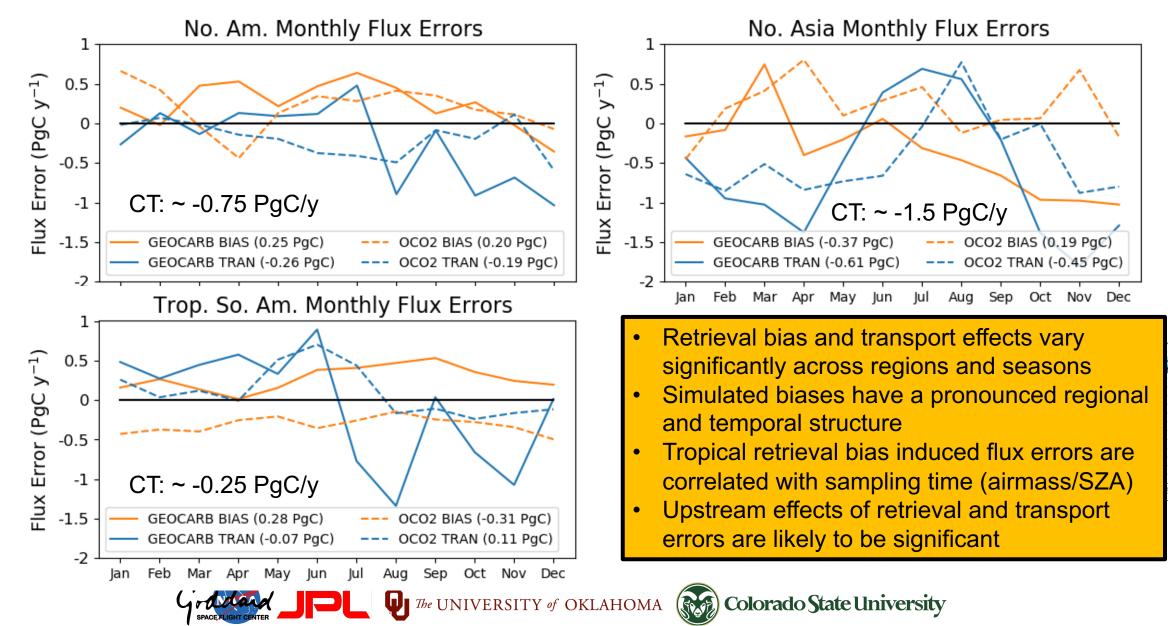
- simulated CO2 comes from GEOS-5 at 0.5°
- assimilated by 6°x4° TM5 system



Flux Inversion Results: Gridded Annual Flux Errors

m⁻² y

gC



GeoCarb

OCO-2

Flux Inversion Results: Regional Scales by Month

Summary and Next Steps

- Random error OSSEs are an important first step, but they miss the effects of large sources of errors – retrieval biases and atmospheric transport errors
- Resulting flux errors from retrieval biases and transport errors are about • the same size
- This (preliminary) analysis suggests that the small perturbations we • examined previously (0.2 PgC for a Transcom region) would not be distinguishable from these error sources SampleCourt
- Next steps \bullet
 - Assimilate GeoCarb and OCO-2 simultaneously to see how the errors interact
 - Optimize GeoCarb sampling to minimize the effects of transport/retrieval ${}^{\bullet}$ errors
 - Include an unbiased instrument with a biased one to see how much posterior ulleterrors are mitigated

