

Carbon Dynamics WG Updates

Abhishek Chatterjee

Jet Propulsion Laboratory, California Institute of Technology

abhishek.chatterjee@jpl.nasa.gov

Contributions from - J. Abshire, D. Butman, B. Byrne, M. Farina, L. Kuai, N. Madani, T. Magney, C. Miller, S. Miller, D. Moore, B. Poulter, B. Rogers, L. Schiferl, W. Sun, K. Walter Anthony, Z. Zhang

Focus of Carbon Dynamics WG during Phase 1-2:

Excerpt from Goetz et al. ABoVE Phase 1 & 2 overview paper

- (a) Linkages between changes in climate with changes in soil temperature, vegetation and the water cycle, in turn affects the carbon cycle aboveground biomass, net primary productivity, heterotrophic respiration, and soil organic carbon production
- (b) Role of disturbances increased drought stress and fire disturbance on ecosystem productivity, response and post-fire recovery
- (c) Diagnosing and attributing methane fluxes from the plot level to regional scales, understanding heterogeneity of methane emissions in time and space
- (d) Quantifying changes in the phenological and seasonal carbon cycle, in terms of both magnitude and amplitude, for e.g., summer carbon uptake being increasingly offset by soil carbon respiration during the fall and early cold seasons, increasing CO₂ amplitudes

Focus of Carbon Dynamics WG during Phase 1-2:

- A variety of carbon cycle activities continued to move forward, spanning observational, bottomup and advances in top-down modeling ...
- Observational side of things: while ground-based sensors, space-based data collection went on, we lacked relevant airborne data (since 2017 AAC) that could bridge the gap between surface measurements and satellite retrievals
- □ Modeling side of things:
 - Unique advances in modeling of methane fluxes, use of OCS and SIF, among others
 - Ad-hoc working group activity on carbon synthesis topics acted as a precursor to studies proposed in Phase 3

Bettles, AK

Kotzebue, AK

Airborne Lidar Measurements of Atmospheric Column CO₂ Concentrations to Cloud Tops in the Arctic

James B. Abshire, Jianping Mao, Xiaoli Sun, Paul T. Kolbeck, S. Randy Kawa

ABoVE projects and Data Access Abshire (2017), Sun (2020) Data Access via ORNL DAAC

KEY FINDING: Yukon Flats Lake CO_2 and CH_4 Emissions show little influence from aged carbon sources.

 Stable and radioisotope mixing model

Garcia-Tigreros et al. final revision – L&O Letters 2023

Updates from Rogers (CARBON 2014), Natali (GBMF 2019), & Rogers (2022) $CO_2 \& CH_4 flux \ observations$

Flux database compilation (ABCflux; Virkkala et al., 2022)

Updates from Rogers (CARBON 2014), Natali (GBMF 2019), & Rogers (2022) Synthesis & publications

Future reversal of warming-enhanced productivity (Zhang et al., 2022)

Respiratory loss in late growing season determines CO₂ sink (Liu et al., 2022)

Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope

Schiferl et al. (2022) Highlight article in Biogeosciences

- Atmospheric CO₂ concentration observations help evaluate several biogenic CO₂ flux models – both growing season net uptake and cold season respiration
- Additional zero-curtain CO₂ emissions not driven by soil temperature and CO₂ fluxes from inland water important for reproducing observations on the Alaska North Slope
- Recent quantifications of cold season emissions are likely overestimated for this region during Jan–Apr, enough to change the sign of the annual net CO₂ budget
- Constrained by the atmospheric observations, the Alaska North Slope net CO₂ flux ranges from –6 to 6 TgC for 2012–2017. In each year, the sign is determined by the magnitude of the net CO₂ flux in the growing season.

ABoVE and ABoVE-affiliated projects: McKain (TE 2016), Munger (CARBON 2016), Anderson (NSF 2018), Natali (TE 2014), Watts (NIP 2017)

Explore the biogenic CO₂ flux model comparisons!

atmoscomp.ldeo.columbia.edu/tvprm

New publication: Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget

Jennifer Watts, Mary Farina, John Kimball, Luke Schiferl, Zhihua Liu, Kyle Arndt, Donatella Zona, et al. *Global Change Biology* (2023)

Quantifying pan-Arctic CO₂ flux seasonality using OCO-2 retrievals

ABOVE Project - Chatterjee (TE 2017)

- Site-level observations have shown pervasive cold season CO₂ release across Arctic and boreal ecosystems, impacting annual carbon budgets.
- Top-down NEE, based on OCO-2 observations, imply strong summer uptake followed by strong autumn release of CO₂ over the entire cold northeastern region of Eurasia.
- This seasonality implies less summer heterotrophic respiration (Rh) and greater autumn Rh than would be expected given an exponential relationship between respiration and surface temperature.

How is the performance of wetland methane models across time scales for the high latitudes?

Zhen Zhang^{1,2}, Sheel Bansal³, Kuang-Yu Chang⁴, Etienne Fluet-Chouinard⁵, Kyle Delwiche⁶, Mathias Goeckede⁷, Adrian Gustafson⁸, Sara Knox⁹, Antti Leppänen¹⁰, Licheng Liu¹¹, Jinxun Liu¹², Avni Malhotra¹³, Tiina Markkanen¹⁰, Gavin McNicol¹⁴, Joe R. Melton¹⁵, Paul A. Miller⁸, Changhui Peng¹⁶, Maarit Raivonen¹⁰, William J. Riley⁴, Oliver Sonnentag¹⁷, Aalto Tuula¹⁰, Rodrigo Vargas¹⁸, Wenxin Zhang⁸, Qing Zhu⁴, Qiuan Zhu¹⁹, Qianlai Zhuang¹¹, Lisamarie Windham-Myers²⁰, Robert B. Jackson²¹, Benjamin Poulter²²

Conclusions:

- Models have better performance at long time scales for Boreal and Wet Tundra sites than at short time scales (< 15 days).
- Biases at short time scales contribute to persistent systematic bias at long time scales.
- Models need to improve the representation of processes at short time scales
- Observations: eddy covariance CH₄ measurements from FLUXNET-CH4 covering boreal forest and wet tundra with a total number of 40 siteyears

Tundra • Boreal Forests/Taiga

• Wetland Models: CLASSIC, ELM, JSBACH-HIMMELI; LPJ-wsl; LPJ-GUESS, TEM-MDM; TRIPLEX-GHG. Zhang et al., JGRB, in review

Model Normalized Residual Error (NRE)

New microwave-based biomass product responsive to disturbance

We developed a new biomass product that includes forest and nonforest area.

Pre/post fire <u>dynamics</u> are like Wang product but different absolution values

Based on VOD & VARI Paper in prep.

Devine, Smith, Moore et al in prep

Moore (TE 2018), NASA Terrestrial Ecosystems Grant 80NSSC19M0103

Assimilating biomass & LAI improves C-cycle estimates in CLM

Huo, Fox, Moore et al in prep

ILAMB

ILAMB	CO.	NPSUL	UI. 25c	Innun
Ecosystem and Carbon Cycle				
Leaf Area Index				
Aboveground Biomass				
Biomass				
Gross Primary Productivity				
Ecosystem Respiration				
Net Ecosystem Exchange				
Soil Carbon				
Hydrology Cycle				
Evapotranspiration				
Latent Heat				
Sensible Heat				
Terrestrial Water Storage Anomaly				
Snow Water Equivalent				
Relationships				
LeafAreaIndex/AVH15C1				
AbovegroundBiomass/GEOCARBON				
Biomass/Thurner				
GrossPrimaryProductivity/FLUXCOM				
Evapotranspiration/MODIS				

Airborne OCS Observations Suggest 25% More NHL GPP Than 6-Model Mean

L. Kuai, C. Miller

Kuai et al., Global Biogeochemical Cycles (2022)

Troy Magney

JGR Biogeosciences

RESEARCH ARTICLE

10.1029/2021JG006588

Key Points:

- Tower-based solar-induced chlorophyll fluorescence (SIF) closely tracks gross primary productivity (GPP) over two years in a mixedspecies boreal forest
- Light saturation of photosynthesis drives non-linearity between SIF and GPP
- The SIF-GPP relationship is seasonally variant due to dynamics between LUE_F and LUE_P

Diurnal and Seasonal Dynamics of Solar-Induced Chlorophyll Fluorescence, Vegetation Indices, and Gross Primary Productivity in the Boreal Forest

Zoe Pierrat¹ ^[10], Troy Magney² ^[10], Nicholas C. Parazoo^{3,4} ^[10], Katja Grossmann⁵ ^[10], David R. Bowling⁶ ^[10], Ulli Seibt¹, Bruce Johnson⁷ ^[10], Warren Helgason⁷ ^[10], Alan Barr⁷, Jacob Bortnik¹ ^[10], Alexander Norton³, Andrew Maguire³ ^[10], Christian Frankenberg⁴ ^[10], and Jochen Stutz¹ ^[10]

¹University of California Los Angeles, Los Angeles, CA, USA, ²University of California Davis, Davis, CA, USA, ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, ⁴California Institute of Technology, Pasadena, CA, USA, ⁵University of Heidelberg, Heidelberg, Germany, ⁶University of Utah, Salt Lake City, UT, USA, ⁷University of Saskatchewan, Saskatoon, SK, Canada Used high resolution tower spectral data to look at temporal dynamics of VIs and SIF at the Southern Old Black Spruce site in Saskatchewan

Troy Magney

Relationships between NDVI, CCI and SIF at Monthly, Daily and Half-hourly time scales

- Observed non-linearity in SIF at the halfhourly time scale due to GPP saturation at high light
- The SIF:GPP relationship is non-linear at half-hourly intervals and the nature of the relationship changes on a monthly basis.
- CCI and NDVI show no relationship at the half-hourly time scale with improvements in temporal aggregration

ENVIRONMENTAL RESEARCH LETTERS

CrossMark

LETTER

Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence

RECEIVED 15 July 2022 REVISED 16 October 2022

ACCEPTED FOR PUBLICATION

Rui Cheng^{1,13,*}, Troy S Magney², Erica L Orcutt², Zoe Pierrat⁸, Philipp Köhler⁷, David R Bowling³, M Syndonia Bret-Harte⁴, Eugénie S Euskirchen⁴, Martin Jung⁵, Hideki Kobayashi⁶, Adrian V Rocha⁹, Oliver Sonnentag¹⁰, Jochen Stutz⁸, Sophia Walther⁵, Donatella Zona¹¹ and Christian Frankenberg^{1,12}

Troy Magney

- We report the regression slope, linear correlation coefficient, and the goodness of the fit of TROPOMI SIF-FLUXCOM GPP relationships for 15 Arctic-Boreal land cover types.
- We found several potential issues specific to the Arctic-Boreal region that should be considered:
- (a) unrealistically high FluxCom GPP due to the presence of snow and water at the subpixel scale;
- (b) changing biomass distribution and SIF-GPP relationship along elevational gradients, and
- (c) limited perspective and misrepresentation of heterogeneous land cover across spatial resolutions.

National Aeronautics and Space Administration Jet Propulsion Laboratory

Climate Change is Enforcing Physiological Changes in Arctic Ecosystems

Nima Madani, Nima.madani@jpl.nasa.gov

Science or Technology Question:

Research Objective: Tracking phenological changes in pan-Arctic ecosystems in the last two decades.

Science goal: Understanding the response of ecosystems to changes in climate using satellite observations.

Data & Results:

- We leveraged solar induced chlorophyll fluorescence (SIF) to study changes in ecosystem phenology across the pan-Arctic domain from 2000-2020.
- We observed unique regional trends in responses of ecosystems to climate change affecting the timing of spring photosynthesis onset, magnitude of peak productivity during the growing season and fall senescence (Fig 1).
- Ecoregions, as a proxy for species and plant functional traits, were the single most important variable to explain the spatial and phenological heterogeneity in observed SIF trends.
- Early growing season onset trends across the vast majority of tends to decline at the end of the season for nearly half of the land area, including parts of North America but more significantly in central Siberia.

Significance:

- The observed changes in phenology highlight the role of biodiversity in regional climate sensitivity.
- The physiological changes would have profound impact on important ecosystem processes such as carbon uptake.

Quantifying climate sensitivities of photosynthesis and respiration in Arctic and boreal ecosystems from top-down observational constraints (Phase 3)

PI: Anna M. Michalak (Carnegie Institution)
Co-I/Science PI: Wu Sun (Carnegie Institution)
Co-I: Ben Bond-Lamberty (PNNL)
Collaborators: V. Balaji (Princeton), Joe Berry (Carnegie),
Chip Miller (JPL), Elena Shevliakova (NOAA GFDL), and
Mary Whelan (Rutgers)

Objectives

- 1. Assess functional responses of simulated GPP and ecosystem respiration to climate drivers
- 2. Use ABoVE observations to constrain the sensitivities of carbon fluxes to climate
- 3. Assess impact of improved sensitivity representation on historical and present-day flux estimates
- 4. Assess impact of improved sensitivity representation on projections of future carbon balance

Project title: A synthesis of variability in CO₂ and CH₄ fluxes from across the ABoVE domain

Investigators: Scot Miller (Johns Hopkins) Debbie Huntzinger (Northern Arizona) Vineet Yadav (NASA JPL)

Key objectives:

- 1. Estimate the spatial and seasonal distribution of GHG fluxes across the ABoVE domain. Focus on fall and spring shoulder seasons.
- 2. Quantify IAV in CO_2 and CH_4 fluxes across the ABoVE domain.
- Evaluate the magnitude, variability, and key environmental drivers of CO₂ and CH₄ fluxes across an ensemble of terrestrial biosphere models. Compare against inferences from atmospheric inverse modeling to identify avenues for reconciling the two.

Status updates: Project officially started late this fall. Currently recruiting PhD students to start work late this spring.

Caption: Mean net CO₂ fluxes by month (year 2018) estimated by the TRENDY biosphere models for global high latitudes (>60° N). Models yield very different estimates for the magnitude of fluxes and different seasonal cycles.

Stable water

Enhanced Methane Emissions in Transitional Permafrost Environments: An ABoVE Phase 3 Synthesis Investigation

Katey Walter Anthony, University Alaska Fairbanks (Co-I), Charles Miller (lead PI)

- Field work targets for 2023:
 - Big Trail Lake (near Fairbanks)
 - Minto Flats
 - NW Alaska (Baldwin Peninsula)
- Objectives
 - $\circ~$ CH_4 seep mapping.
 - CH₄ fluxes relationship to geophysical measurements of abrupt thaw.
 - o Geospatial relationships to AVIRIS-NG hotspots.
- See Walter Anthony et al. (2021) ERL, Pellerin et al. (2022) – GCB, Sullivan et al. (2021) – PPP, Engram and Walter Anthony (in review) – RSE, Lotem et al. (in review) – Limnology and Oceanography

38% increase in lake area due to warming between 1985-2009

Ebullition (L gas

Methane hotspots in newly formed thermokarst lakes

Looking ahead..

- Phase II wrap-up (projects, data deliveries, synthesis activities) & transition to Phase III (current).
- Signing off as Chair of Carbon Dynamics and the ad-hoc Carbon Synthesis group.
- New co-chairs for the WG Jon Wang (Univ. of Utah) and Jennifer Watts (WCRC)

QUESTIONS?

abhishek.chatterjee@jpl.nasa.gov

Incoming chairs - jon.wang@utah.edu, jwatts@woodwellclimate.org