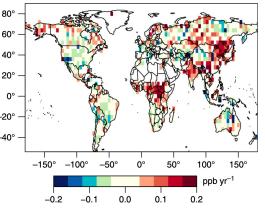
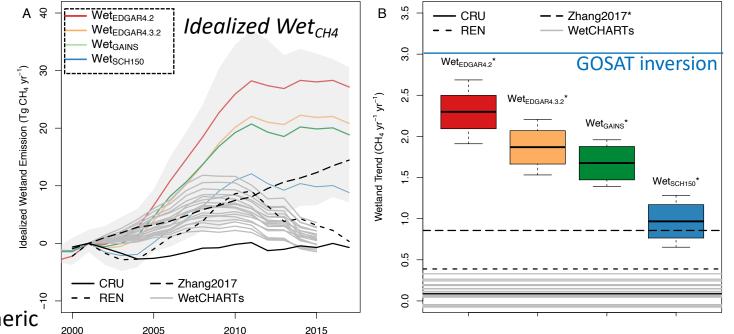
Large increase in wetland emissions by GOSAT XCH₄ inversions not supported by process-based models


Zhen Zhang¹, Ben Poulter², Abhishek Chatterjee³, and many collaborators

¹Department of Geographical Sciences, University of Maryland; ²Biospheric Sciences Laboratory, NASA Goddard Space Flight Center; ³Global Modeling and Assimilation Office, NASA Goddard Space Flight Center How much wetland increase needed

Background

- Understanding the discrepancies between top-down and bottom-up estimates in CH₄ trends is crucial
- XCH₄ Proxy retrievals suggests leading contributions from tropical wetlands (Yin et al., 2020; Zhang et al., 2021)

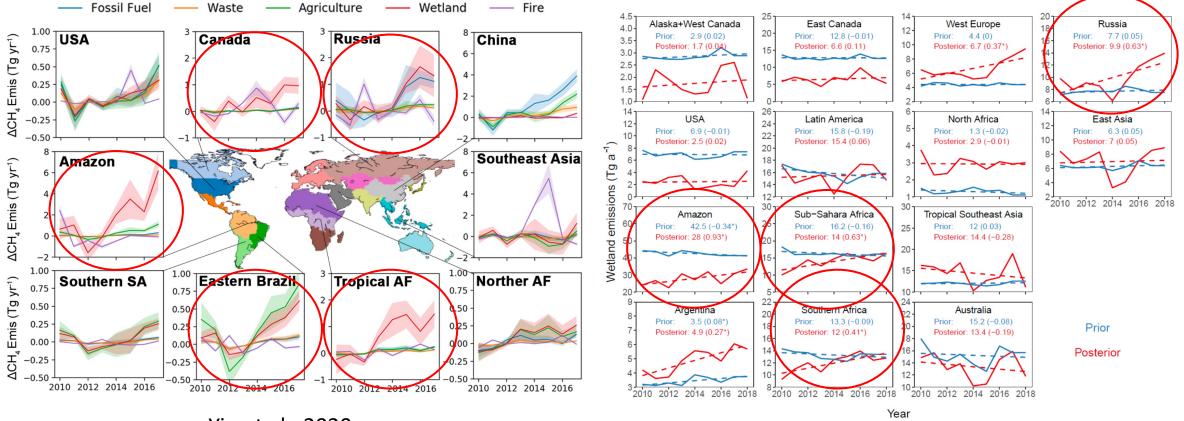

XCH4 Trends in GOSAT RemoteC proxy retrievals for 2009-2015

Miller et al., 2019

Methods:

- Box model
- Reproduce atmospheric
 [CH₄] and ¹³C-CH₄
- Large ensemble of emission scenarios
- Considering varying OH and spatial variability in ¹³C-CH₄ in source

CRU: no trend in Wet_{CH4}; REN: step increase in Wet_{CH4}; Zhang2017:upper bound of climate-CH₄ feedback


Conclusions

- The large wetland increases from GOSAT XCH₄ inversions are not supported by the process-based models
- Difference in XCH₄ products needs further investigations

Contact: Zhen Zhang yuisheng@gmail.com

Two recent inversions point to climate-CH₄ feedbacks

- Both based on GOSAT XCH₄ proxy retrievals
- Suggest widespread increases in wetland CH_4 at 2-3 Tg yr⁻¹ yr⁻¹ for 2010-2018

Yin et al., 2020

Zhang et al., 2020