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Introduction WetCH4 framework

Site-level observations

Conclusions and future work

Methane (CH4) is a potent greenhouse gas that has a 
global warming potential 28 times greater than CO2 over a 
period of 100 years. The major sources of natural CH4 
emissions to the atmosphere are from wetlands. Northern 
wetlands (>45º N) encompass 4.19±2.22 million km2 land 
area, accounting for roughly 40% of global wetland area. 
Estimates on northern wetland CH4 emissions are uncertain, 
ranging 22–49.5 Tg CH4 yr-1. A detailed understanding of the 
spatio-temporal variability of CH4 emission rates remains 
limited. Data-driven upscaling that uses empirical models, 
including machine learning (ML) approaches, to simulate 
CH4 fluxes provides independent estimates that complement 
those estimates from process-based models and atmospheric 
inversions. Here we present a ML upscaling framework 
(WetCH4) to characterize the spatial and temporal variability 
of wetland methane fluxes. With WetCH4, we produced daily 
10-km methane fluxes across the Arctic and boreal wetlands 
for 2016-2022.
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Figure 2. Workflow and experimental design: abstract methodological steps are 
integrated in the left dash box; detailed framework development is described on the 
right with colors matching the associated step on the left.

This research is supported by the TED Audacious Project (Permafrost 
Pathways). We thank David Olefeldt, Sara Knox, the Fluxnet-CH4 
community, and our site PIs, Elyn Humphreys, Michelle Garneau, David 
Cook, Donatella Zona, Lydia Vaughn, Margaret Torn, Hiroki Iwata.

Figure 3. Model predictive performance evaluation on random forests modeled CH4 fluxes 
and independent validations: (a) boxplots of R2, mean absolute error (MAE), and root mean 
squared error (RMSE) across validation sites by wetland types; (b) pooled daily means density 
scatter plot; (c) pooled monthly means density scatter plot. 

Figure 5. Mean annual wetland CH4 fluxes: the top row contains WetCH4 upscaled fluxes 
between 2016 and 2022 and weighted by wetland fractions for three wetland maps including 
Wetland Area and Dynamics for CH4 Modeling (WAD2M), Satellite-derived global surface 
water extent and dynamics (GIEMS2), and the static Global Lakes and Wetlands Database 
(GLWD); the bottom row contains bottom-up Global Carbon Project (GCP) ensemble mean, 
the extended ensemble of wetland CH4 estimates (WetCHARTs), and top-down estimates of 
CarbonTracker-CH4 natural microbial emissions.
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Figure 6. Multi-year average seasonal cycles of wetland CH4 emissions: (a) ML-upscaled 
mean seasonal cycles with WAD2M in comparison to process-based models for 45°-90° N; 
(b) same comparison for 60°-90° N and addition of atmospheric CarbonTracker-CH4 
attributed microbial emissions (2016-2022); (c) compare three ML-upscaled mean seasonal 
cycles of CH4 emissions with different wetland area maps; (d) compare WetCH4 mean 
seasonal cycles over the land (black line), with the permafrost wetland map (olive line),  
and with WAD2M (green line), to the estimates of CH4 fluxes in growing seasons from 
CARVE retrievals in North Slope area of Alaska.

Figure 1. Eddy covariance sites: distribution, class, and data 
size (site-years) used in WetCH4. The EC data are from the 
Fluxnet-CH4 database and the contributions of site PIs. The 
background image shows the maximum annual fractions of 
wetland cover in 2011-2020 from WAD2M.

Model validation
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WetCH4 introduced reanalysis soil temperature, satellite soil moisture and surface 
reflectance in modeling wetland CH4 fluxes to improve accuracy (R2 = 0.62). The 
framework will be applied to model long term wetland CH4 fluxes with more EC 
observations compiled and the availability of satellite soil moisture product before 2016 
(e.g. ESA Climate Change Initiative soil moisture).

Figure 4. An example of modeled daily CH4 fluxes 
versus observations at CA-ARF site.
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