

WetCH₄: A Machine Learning-based Upscaling of Methane Fluxes of Northern Wetlands during 2016-2022

Qing Ying¹ (qying@umd.edu), Benjamin Poulter², Jennifer D. Watts³, Kyle A. Arndt³, Lori Bruhwiler⁴, Youmi Oh^{4,5}, Brendan M. Rogers³ Susan M. Natali³, Hilary Sullivan³, Luke D. Schiferl⁶, Clayton D. Elder⁷, Olli Peltola⁸, Annett Bartsch⁹, Amanda Armstrong², Ankur R. Desai¹⁰, Eugénie Euskirchen¹¹, Mathias Göckede¹², Bernhard Lehner¹³, Mats B. Nilsson¹⁴, Matthias Peichl¹⁴, Oliver Sonnentag¹⁵, Eeva-Stiina Tuittila¹⁶, Torsten Sachs¹⁷, Aram Kalhori¹⁷, Masahito Ueyama¹⁸, Zhen Zhang¹

¹Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA ²Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ³Woodwell Climate Research Center, Falmouth, MA 02540, USA ⁴NOAA Global Monitoring Laboratory, 325 Broadway, Boulder, Colorado, USA ⁵Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80305, USA ⁶Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA ⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ⁸Natural Resources Institute Finland, Helsinki, Finland ⁹ b.geos, Korneuburg, Austria

Introduction

Methane (CH_4) is a potent greenhouse gas that has a global warming potential 28 times greater than CO₂ over a period of 100 years. The major sources of natural CH₄ emissions to the atmosphere are from wetlands. Northern wetlands (>45° N) encompass 4.19±2.22 million km² land area, accounting for roughly 40% of global wetland area. Estimates on northern wetland CH₄ emissions are uncertain, ranging 22–49.5 Tg CH_4 yr⁻¹. A detailed understanding of the spatio-temporal variability of CH₄ emission rates remains limited. Data-driven upscaling that uses empirical models, including machine learning (ML) approaches, to simulate CH₄ fluxes provides independent estimates that complement those estimates from process-based models and atmospheric inversions. Here we present a ML upscaling framework (WetCH₄) to characterize the spatial and temporal variability of wetland methane fluxes. With WetCH₄, we produced daily 10-km methane fluxes across the Arctic and boreal wetlands for 2016-2022.

Figure 1. Eddy covariance sites: distribution, class, and data size (site-years) used in WetCH₄. The EC data are from the Fluxnet-CH₄ database and the contributions of site PIs. The background image shows the maximum annual fractions of wetland cover in 2011-2020 from WAD2M.

Acknowledgments

This research is supported by the TED Audacious Project (Permafrost Pathways). We thank David Olefeldt, Sara Knox, the Fluxnet-CH₄ community, and our site PIs, Elyn Humphreys, Michelle Garneau, David Cook, Donatella Zona, Lydia Vaughn, Margaret Torn, Hiroki Iwata.

¹⁰Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, WI 53706, USA ¹¹Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA ¹²Max Planck Institute for Biogeochemistry, Jena, Germany

¹³Department of Geography, McGill University, Montreal, Quebec, Canada

¹⁴Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden ¹⁵Département de géographie, Université de Montréal, Montréal, QC, Canada

¹⁶School of Forest Sciences, University of Eastern Finland, Joensuu, Finland

¹⁷GFZ German Research Centre for Geosciences, Potsdam, Germany ¹⁸Graduate School of Agriculture, Osaka Metropolitan University, Japan

different upscaling applications

Figure 2. Workflow and experimental design: abstract methodological steps are integrated in the left dash box; detailed framework development is described on the right with colors matching the associated step on the left.

Figure 3. Model predictive performance evaluation on random forests modeled CH₄ fluxes and independent validations: (a) boxplots of R², mean absolute error (MAE), and root mean squared error (RMSE) across validation sites by wetland types; (b) pooled daily means density scatter plot; (c) pooled monthly means density scatter plot.

Figure 4. An example of modeled daily CH₄ fluxes versus observations at CA-ARF site.

Scan me!

Reference: Ying, Q., Poulter, B., Watts, J. D., Arndt, K. A., Virkkala, A.-M., Bruhwiler, L., Oh, Y., Rogers, B. M., Natali, S. M., Sullivan, H., Schiferl, L. D., Elder, C., Peltola, O., Bartsch, A., Armstrong, A., Desai, A. R., Euskirchen, E., Göckede, M., Lehner, B., Nilsson, M. B., Peichl, M., Sonnentag, O., Tuittila, E.-S., Sachs, T., Kalhori, A., Ueyama, M., and Zhang, Z.: WetCH4: A Machine Learning-based Upscaling of Methane Fluxes of Northern Wetlands during 2016–2022, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-84, in review, 2024.

Figure 5. Mean annual wetland CH₄ fluxes: the top row contains WetCH₄ upscaled fluxes between 2016 and 2022 and weighted by wetland fractions for three wetland maps including Wetland Area and Dynamics for CH₄ Modeling (WAD2M), Satellite-derived global surface water extent and dynamics (GIEMS2), and the static Global Lakes and Wetlands Database (GLWD); the bottom row contains bottom-up Global Carbon Project (GCP) ensemble mean, the extended ensemble of wetland CH₄ estimates (WetCHARTs), and top-down estimates of CarbonTracker-CH₄ natural microbial emissions.

Figure 6. Multi-year average seasonal cycles of wetland CH₄ emissions: (a) ML-upscaled mean seasonal cycles with WAD2M in comparison to process-based models for 45°-90° N; (b) same comparison for 60° - 90° N and addition of atmospheric CarbonTracker-CH₄ attributed microbial emissions (2016-2022); (c) compare three ML-upscaled mean seasonal cycles of CH₄ emissions with different wetland area maps; (d) compare WetCH₄ mean seasonal cycles over the land (black line), with the permafrost wetland map (olive line), and with WAD2M (green line), to the estimates of CH_4 fluxes in growing seasons from CARVE retrievals in North Slope area of Alaska.

Conclusions and future work

WetCH₄ introduced reanalysis soil temperature, satellite soil moisture and surface reflectance in modeling wetland CH_4 fluxes to improve accuracy ($R^2 = 0.62$). The framework will be applied to model long term wetland CH₄ fluxes with more EC observations compiled and the availability of satellite soil moisture product before 2016 (e.g. ESA Climate Change Initiative soil moisture).