
Application
Downslope windstorms, known as Sundowners, combined with 
flammable chaparral ecosystems and human spread into the wildland 
urban interface (WUI), cause significant wildfire danger to the populated 
regions of Santa Barbara County’s south coast.

The Santa Barbara County Fire Safe Council is implementing a novel 
Regional Wildfire Mitigation Program (RWMP) aimed at holistically 
increasing wildfire resilience in three domains: 
community, landscape, built.

Abstract
Understanding wildfire dynamics requires comprehension of meteorology, climate, ecology, combustion, and complex topography. The interactions between these factors alter the amount of water within 
vegetation, also known as fuel moisture content (FMC), thus affecting the flammability. Better prediction of FMC can help communities increase their resilience and can help wildfire behavior analysts 
model fire spread. In this study, we create a machine learning model to predict live FMC. Our predictors include meteorological outputs from a 32-year Weather Research and Forecasting (WRF) Model 
climatology, Landsat observations, and static topography data. Our predictands consist of ten thousand in-situ FMC observations, spanning eight chaparral species, from the National Fuel Moisture 
Database. Lag correlation analysis is performed to determine the strongest relationship between predictors and predictands before running the random forest model. Dead FMC is being calculated using 
semi-empirical equations adapted from the Nelson dead fuel model. After successful live and dead FMC models are created, a historical, gridded dataset of FMC will be constructed. FMC variations will 
then be connected with different weather and climate events, as well as different wildfire behavior case studies. This moderate resolution modeling of FMC can also be used to better inform resilience 
efforts in the region of interest, such as Santa Barbara County’s Regional Wildfire Mitigation Program (RWMP).

Live Fuel Moisture (LFM)
Live fuel moisture behaves differently than DFM, due to soil-plant-
water dynamics. The LFM response time to changes in atmospheric 
conditions is longer than DFM and varies amongst vegetation type. 
Many fire agencies collect vegetation samples to help determine 
wildfire danger. The samples are immediately weighed, then dried, 
and weighed again to determine LFM. LFM significantly alters how 
hot, fast, and far a wildfire will burn, and it has a strong influence 
on when fire season begins and ends in any given location.

Figure 3. Chamise LFM 
samples taken 
throughout Santa 
Barbara County during 
2019. LFM levels were 
on the rise, and above 
the critical 60% 
threshold when the 
November 25, 2019, 
Cave Fire ignited.

Figure 4. LFM observation locations throughout our 
current domain. There are 30 locations, with 10,397 
observations of 8 different species. Table 1. Predictor variables are calculated at each of the LFM observation sites. 

The combination of numerical weather modeling variables and remote sensing 
variables incorporates environmental and vegetation conditions.

Current results – 10 Random forest models were run, one with all species combined, as well as one for each individual species. Before the 
model run, k-fold cross validation was performed to determine the number of decision 
trees that minimized mean absolute error. The all-species model did not perform well, 
which was expected, due to the reasoning shown in Fig 7. Next steps include using 
potential evapotranspiration as a dry-down predictor, additional predictor analysis, and 
testing other machine learning methods.
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Dead Fuel Moisture (DFM)
This work is currently led by Katie Vick, UCSB Earth Science undergraduate.
Dead fuels are classified into different size classes. The US National Fire 
Danger Rating System uses the nomenclature: 1-, 10-, 100-, and 1000-hr 
fuels, which corresponds to the amount of time that two thirds of the 
mass of the fuel equilibrates with atmospheric moisture levels.

Figure 1. Temperature and relative humidity time series at a weather station near the November 25, 2019, 
Cave Fire ignition. The biggest driver of DFM changes involves vapor exchange with the surrounding air.

Figure 2. The RAWS from Fig. 1 also observes 10-hr DFM. We have been testing different semi-empirical 
methods for calculating the 10-hr DFM. This figure shows the method used in Nieto (2009), which is a variation 
of the Nelson (1984) model. It is based on calculating an equilibrium moisture content (EMC), as seen below.

R = Universal gas constant
M = molecular weight of water
A/B = fuel type specific 
parameters

T = Temperature (K)
RH = Relative Humidity (%)

WRF variables Raster vars

3-day max temp mean 90-day mean temp Elevation

7-day max temp mean 150-day mean temp Slope

7-day min RH mean 150-day mean RH Aspect

3-day total precip 150-day incoming radiation NDVI

7-day total precip 30-day wind speed NDMI

Daily evapotranspiration 30-day mean VPD NIRV

Daily AWD (e-p) 30-day total precip

Day Length 90-day total precip

7-day mean soil moisture

Pressure

Data and Methods
We are building a machine learning model using 
predictors from Landsat, the Weather Research and 
Forecasting (WRF) model, and LANDFIRE. 
Predictands come from National Fuel Moisture 
Database LFM samples.

Lopez Lake LFM Observations

LFM (%)

150-day 
Temp (K)

90-day 
Precip
(mm)

NIRV

Clark Motorway Malibu Chamise LFM and Predictors

# observations: 10,397
Accuracy (100-MAPE): 79%

R2 score: 0.326
MAE: 22.1

# observations: 6,448
Accuracy (100-MAPE): 91%

R2 score: 0.811
MAE: 8.57

Figure 6. The random forest 
model that included all species 
did not perform well (see inset 
results) due to LFM variation 
between species (see Fig. 7). 90-
day accumulated precipitation 
had the highest importance, 
which measures the decrease in 
incorrect classification likelihood 
when that variable is chosen to 
split a decision tree node.

Figure 5. Example (shortened) 
decision tree.

Figure 7. LFM observations of 
chamise, old growth chamise, and 
California sage at Lopez Lake. The 
differences between the samples 
makes it difficult to create a 
gridded LFM dataset.

Figure 8. The chamise random forest model performed much 
better than the all-species model (see inset results). The same 
predictor variables were used, but the top 6 variable importance 
values are shown here. Five out of the six variables all follow a 
seasonal cycle, just like LFM.

Figure 9. Observed chamise LFM, 90-day accumulated precipitation, 
150-day mean temperature, and NIRV at the Clark Motorway location

https://rwmpsantabarbara.org/

	Slide 1

