17th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS 17) - June 14 – 17, 2021 Session 3.2c: Observations to quantify hot spots and local/urban emissions

Detection of locally elevated methane concentrations by analyzing Sentinel-5 Precursor satellite data

S Vanselow¹, O Schneising¹, M Buchwitz¹, H Bovensmann¹, J P Burrows¹

(1) Institute of Environmental Physics (IUP), University of Bremen, 28334 Bremen, Germany

- Methane (CH₄) is an important greenhouse gas which is emitted by many anthropogenic and natural sources
- Many methane sources have large uncertainties or are unknown and therefore need to be detected and quantified

Universität

Bremen

S5P/WFMDv1.5 hotspot cluster

Sentinel-5 Precusor (S5P) provides XCH₄ (=columnaveraged methane mole fractions) with high spatial (7 × 7 km²) and temporal (daily) resolution

.

•

We developed an algorithm which uses the S5P data to automatically detect areas with temporally stable strongly elevated methane concentrations

Dataset: TROPOMI/WFMDv1.5 XCH₄

*

- Latest version (1.5) of the XCH₄ Data product of the WFM-DOAS retrieval algorithm (Schneising et al., 2019)
- Monthly XCH₄ data (2018/2019) on latitude longitude grid with 0.1° x 0.1° resolution

Atmos. Meas. Tech., 12, 6771–6802, 2019 https://doi.org/10.5194/amt-12-6771-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. © 0

Atmospheric Measurement Techniques

Schneising et al., 2019

A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor

Oliver Schneising¹, Michael Buchwitz¹, Maximilian Reuter¹, Heinrich Bovensmann¹, John P. Burrows¹, Tobias Borsdorff², Nicholas M. Deutscher², Dietrich G. Feist^{1,5,6}, David W. T. Griffith¹, Frank Hase⁷, Christian Hermans³, Laura T. Tracf², Riget Kiv¹, Jochen Landgraf², Samu Morino¹¹, Justus Nothol¹¹, Christof Petri¹, David F. Pollard¹², Schnstien Roche¹³, Kei Shiomi¹¹, Kimberly Strong¹³, Ralf Sussmann¹⁵, Voltaira A. Velazeo², Thorsten Warnek¹, and Dera Wunch¹¹ Preparation of the Dataset (*):

- Only consider gridpoints with monthly XCH₄ values calculated from 6 or more days
- Elevation correction to account for XCH₄ variations due to variations of surface elevation (Buchwitz et al., 2017)

TROPOMI/WFMDv1.5 XCH₄ 201801*

TROPOMI/WFMDv1.5 XCH₄ 201910

XCH₄ 201911³

TROPOMI/WFMDv1.5

WFMDv1.5 XCH4 201912

- Large-scale methane fluctuations (such as the hemispherical gradient) must be eliminated to analyze local methane enhancements
- Apply spatial high-pass filter to calculate methane anomalies
 ΔXCH₄ from absolute XCH₄ values

Universität

Bremen

High-pass filter applied to every gridpoint:

- Define area around gridpoint (e.g. 2° × 2°)
- Area must have at least 33% gridpoints with measurements
- Define background of the area as the gridpoints with XCH₄ less than the 95th percentile of the XCH₄ values
- Calculate median of background
 - Calculate anomaly ΔXCH_4 of gridpoint: $\Delta XCH_4 = XCH_4$ of gridpoint – median of XCH_4 of background

- Analysis of the monthly maps of methane anomalies to identify areas with temporally stable methane enhancements
- The associated algorithm depends on many (threshold) parameters, which affect, e.g.
 - How strong the ΔXCH_4 of the area should be at least
 - In how many months the methane enhancement should be present
 - How large the detected area should be

Universität 🚺

Bremen

Assignment of detected areas to possible anthropogenic ٠ emission sources due to comparison with databases for methane emissions related to fossil fuels (EDGAR v5.0, Crippa et al., 2021 and Scarpelli et al, 2020)

Steffen Vanselow

First results: Some detected areas are subject of several studies

Universität

Bremen

First results: Some detected areas are subject of several studies

S5P Cluster	Strength= Area*∆XC₄	Area[km ²]	∆XCH₄ [%]	ΔXCH₄ [ppb]	Months over limit	Months measured	Scarpelli [kt/yr]	EDGAR [kt/yr]
3	160	23594	0.66	12.26	15.60	22.59	673	613
12	48	13675	0.35	6.47	6.78	23.00	251	219

Universität

Bremen

Turkmenistan

John P. Burrow

45°N

40°/

35°N