European CH₄ flux distributions estimated from CTE-CH₄ atmospheric inversion assimilating TROPOMI XCH₄ data

Aki Tsuruta*, Leif Backman, Hannakaisa Lindqvist, Ella Kivimäki, Janne Hakkarainen, Oliver Schneising, Michael Buchwitz, Sander Houweling, Tuula Aalto. *Finnish Meteorological Institute, aki.tsuruta@fmi.fi

Examine spatial distribution of European CH₄ flux for biospheric (wetlands) and anthropogenic

Seasonal cycle is mostly driven by biospheric sources, but high uncertainty remains.

\rightarrow Will satellite XCH₄ bring additional information?

European CH₄ flux spatial distributions also vary a lot among GCP models

- High anthropogenic emissions in cities, agricultural areas → high in central Europe
 - TD estimates do not vary so significantly between models
- Biospheric emissions are high in northern and north-east Europe
 - Locations of hot spots vary much between TD, BU-Prognostic and BU-Diagnostic
 - Range in estimates is significantly higher than that of anthropogenic emissions

Mean and range of CH₄ emission estimates over Europe, 2005-2017 average

*Mean of model ensembles is calculated from 2005-2017 monthly data. *Min. and Max. are minimum and maximum of model ensembles.

CarbonTracker Europe-CH₄ (CTE-CH₄) atmospheric inverse model

Model setup

- Grid-based optimization over Europe on 1° x 1° 6° x 4° (latitude x longitude) resolution with spatial correlation of 100-500 km
- Optimize anthropogenic and biospheric (wetlands + soil sink) fluxes
- Assimilate surface CH₄ observations mainly from ICOS and NOAA stations
- Assimilate XCH₄ from S5P TROPOMI
 - Operational product provided by SRON (OPER)
 - Research product provided by Univ. Bremen (WFMD)

Spatial anomaly of biospheric (wetlands + soil sinks) fluxes, July 2018

- High biospheric emissions in Northern EU, but least pronounced in WFMD inversion
- Enhancement in biospheric emission hot spots from satellite inversions, such as in southern Sweden, Benelux and northeast Italy.

Spatial anomaly of anthropogenic fluxes, July 2018

- Anthropogenic emissions from SURF inversion are much more pronounced in Benelux, Germany, northern Italy
- Hot spots are most distinct/clear in WFMD inversion. Others have more small "regional" enhancements.

European CH₄ flux distributions estimated from CTE-CH₄

Monthly budgets, 2018

- Biospheric (wetland) fluxes
 - OPER and SURF estimates earlier summer maximum of
 - Both in EU and Fennoscandia only
 - Timing of seasonal mimum agree among inversions
- Anthropogenic emissions
 - OPER and SURF show clear maximum in August \rightarrow associated with correlation structure?
- Uncertainty in satellite inversion corresponds well to the number of available data
 - low unc. in summer, high in winter

