Raquel Serrano¹, Barbara Dix³, Joost de Gouw^{3,4}, Pieternel Levelt^{1,2}, Pepijn Veefkind^{1,2}

TUDelft Deft University of Technology

¹ Department of Geoscience and Remote Sensing, Technical University of Delft, the Netherlands, ² Royal Netherlands Meteorological Institute, De Bilt, the Netherlands, ³ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA ⁴ Department of Chemistry, University of Colorado, Boulder, CO, USA

University of Colorado

Boulder

Raquel Serrano, Barbara Dix, Joost de Gouw, Pieternel Levelt, Pepijn Veefkind

Classification

O&G activities

Drilling

Activity rates:

Low

High Very high

Average

Oil production

Gas production

Introduction

TUDelft

NUL

Total production oil (Barrels/day) Total production gas (Mcf/day) ——Rig count

* Data source: Energy Information Administration

The lot have a second of the second of the

The United States is the largest O&G producing country, with the Permian basin being the second largest hydrocarbon-bearing area.

In March 2020, the COVID-19 pandemic caused an historic collapse in fossil fuel demand and unprecedent scenario for fossil fuel emission analysis.

Data and Methods

Interpolations

Divergence method

103

For this study, level 2 offline data of total columns of methane (CH₄) and nitrogen dioxide (NO₂) obtained from the Tropospheric Monitoring Instrument TROPOMI on board the Copernicus Sentinel 5P satellite were used.

Mask of non

O&G activities

飍

Raquel Serrano, Barbara Dix, Joost de Gouw, Pieternel Levelt, Pepijn Veefkind

Monthly median methane concentration column January – June 2019 and 2020

TUDelft

Monthly median nitrogen dioxide column January – June 2019 and 2020

NO_2 and CH_4 % difference from January - September between 2019 and 2020

Sub-basin	CH₄ mean	CH₄min	CH₄ max	NO ₂ mean	NO₂min	NO ₂ max
Delaware	0.26%	1.54%	0.25%	-4.35%	-5 %	0%
Midland	0.17%	0.57%	-0.32%	-4.55%	21%	-28 %
Central	0.1%	0.57%	-1.02%	-4.55%	-76%	12 %
Ozona Arc	0.12%	0.49%	-0.54%	-6.25%	30%	0 %
Valverde	0.15%	0.55%	-1.55%	0%	0%	55%

Monthly median methane and nitrogen dioxide column during 2020

Nitrogen dioxide was more impacted by the COVID-19 not only during the lockdown period, but also in 2020 mean concentrations respect to the 2019.

In the case of methane concentrations, due to the life time and the previous high emissions during winter months in 2020, the COVID-19 effect was not appreciated, specially in Delaware basin (the most productive basin in the Permian).

Raquel Serrano, Barbara Dix, Joost de Gouw, Pieternel Levelt, Pepijn Veefkind

University of Colorado Boulder

Median NO₂ emissions in pre and post COVID-19 lockdown

- 30% average in NO₂ emissions in all the subbasins of the Permian

ninklijk Nederlands steorologisch Instituu

TUDelft

Most productive basins (April-June) 2020

Basin	Mean + SD 2019	Mean +SD 2020	COVID19 impact
Delaware	3.5 e-09 ± 2.5e-09	2.5e-09 ± 1.8e-09	- 28%
Midland	3.9 e-09 ± 2.2e-09	2.6e-09 ± 2.2e-09	- 33%
Central	3.2e-09 ± 1.7e09	2.6e-09 ± 1.9e-09	- 18%

Less productive basins (April-June) 2020

Basin	Mean + SD 2019	Mean +SD 2020	COVID19 impact
Ozona arc	2.3e-09 ±1 .7e-09	1.6e-09 ± 2e-09	- 30%
Valverde	1.8e-09 ± 1.4e-09	1.3e-09 ± 1.9e-09	- 27%

Raquel Serrano, Barbara Dix, Joost de Gouw, Pieternel Levelt, Pepijn Veefkind

Oil production

Gas production

Drilling activity

10

Median NO₂ emissions

TUDelft

Concentrations, emissions and O&G activity spatial relationships

Raquel Serrano, Barbara Dix, Joost de Gouw, Pieternel Levelt, Pepijn Veefkind

University of Colorado Boulder

NO2 emissions quantification and source attribution

Conclusions

TUDelft

- Tropomi can track downturn production and drilling activity in the Permian basin tracking the NO₂ emissions.
- NO₂ tropospheric concentrations have the highest values in the most productive regions (Delaware, Midland and Central basin)
- Concetrations of methane seems to increase during the COVID-19 lockdown for a posterior decrease during the summer months in 2020.
- NO₂ emissions calculated with the divergence method show a significant reduction during COVID-19 in the Permian basin.
- The divergence method seems to help to locate the emission source and identify the oil and gas related activity.
- Places where production and drilling activities ocurred at the same time had the highest NO₂ emission rates and experienced the largest decrease during the COVID-19 lockdown.

Acknowledgements

This work is supported by Shell Global Solutions International B.V. The authors gratefully acknowledge the helpful discussions with the Shell team