# Synthesis of Arctic-Boreal region biogenic methane fluxes, model-data mismatch, and knowledge gaps Luke D. Schiferl<sup>1,2</sup> (schiferl@seas.harvard.edu), Shannon Reault<sup>3</sup>, Hailey Webb<sup>4</sup>, Abhishek Chatterjee<sup>5</sup>, Róisín Commane<sup>2,6</sup>, Mary Farina<sup>7</sup>, Elizabeth Hoy<sup>8</sup>, Benjamin Poulter<sup>8</sup>, Jennifer Watts<sup>4</sup>, and Zhen Zhang<sup>9</sup>

1. Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA, 3. Clark University, Worcester, MA, USA, 4. Woodwell Climate Research Center, Falmouth, MA, USA, 5. NASA Jet Propulsion Laboratory, Pasadena, CA, USA, 6. Department of Earth and Environmental Sciences, Columbia University, NY, USA, 7. Montana State University, NY, USA, 7. Montana State University, NY, USA, 7. Montana State University, NY, USA, 8. NASA Goddard Space Flight Center, Greenbelt, MD, USA, 9. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

### **Global Methane Budget**



Are we missing natural (or warming-induced) sources in Arctic-boreal regions?

How do we define an ecosystem biogenic methane emitting surface or region?











Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope Schiferl et al. (2022) Highlight article in Biogeosciences

Atmospheric CO<sub>2</sub> concentration observations help evaluate several biogenic CO<sub>2</sub> flux models – **both growing season net** uptake and cold season respiration.

Additional zero-curtain CO<sub>2</sub> emissions not driven by soil temperature and CO<sub>2</sub> fluxes from inland water important for reproducing observations on the Alaska North Slope.

Recent quantifications of cold season emissions are **likely** overestimated for this region during Jan–Apr, enough to change the sign of the annual net CO<sub>2</sub> budget.

Constrained by the atmospheric observations, the Alaska North Slope net CO<sub>2</sub> flux ranges from –6 to 6 TgC for 2012–2017. In each year, the sign is determined by the magnitude of the net CO<sub>2</sub> flux in the growing season.

ABoVE and ABoVE-affiliated projects: McKain (TE 2016), Munger (CARBON 2016), Anderson (NSF 2018), Natali (TE 2014), Watts (NIP 2017



### **Initial Take-aways**

Global wetland models capture magnitude and timing of biogenic methane for inundated and non-inundated boreal forest – but not Arctic tundra

Still investigating reasons: Inundation not appropriate metric for wet land? Soil type/subsurface processes/veg type instead?

## **Next Steps**

Flux Observations of Carbon from an Airborne Laboratory-2 (FOCAL2) ABoVE-affiliated Anderson (NSF 2018)



August-September 2023 Airborne eddy flux measurements of carbon gases and isotopes on Alaska North Slope



Explore  $CH_4$  (and  $CO_2$ ) fluxes along wetness gradients

This work is done as part of an ABoVE Carbon Dynamics Working Group synthesis project. Thank you to observational data and model providers cited throughout the poster for your essential contributions.

NASA





Wetland methane  $\neq$  ecosystem biogenic methane? Large contribution from lakes/ponds?





Sayres et al., 2017