

Uncovering the hidden: Leveraging sub-pixel spectral diversity to estimate plant diversity from space Christian Rossi^{1,2} & Hamed Gholizadeh¹

¹Department of Geography, Oklahoma State University, Stillwater, OK, USA; ²Department of Geoinformation, Swiss National Park, Zernez, Switzerland E-mail address: christian.rossi@nationalpark.ch

Background:

- Spectral diversity has emerged as a valuable proxy for plant diversity.
- Pixel size of spaceborne data limits the estimation of local plant • diversity via spectral diversity in grasslands.

Assumption:

Spectral signature of a pixel is a linear combination of spectra of unique spectral species present within that pixel (i.e., plant endmembers s_1 , s_2 , s_3) weighted by their corresponding abundances (α_1 , α_2 , α_3).

Method:

- Applying spectral unmixing to derive the abundance (α_i) of unique spectral species (s_i).
- Calculating subpixel spectral diversity from s_i and α_i using the • spectral species richness and Simpson index.
- Using subpixel spectral diversity as a proxy of plant community diversity.

Implications:

- Results obtained from DESIS data have been encouraging, indicating the potential of forthcoming spaceborne imagers to map plant diversity.
- Further developments and tests on different ecosystems and datasets are needed to operationalize the approach.

Capturing plant diversity with spaceborne imaging spectroscopy

DESIS data at 30m resolution

Spectral endmember abundance

Funding: NASA NIP award [80NSSC21K0941]

Endmember diversity

Results from simulated data: 15,000 simulated

communities (3-17 prairie grassland species per community and soil; signal-to-noise ratio of 60).

Results from real-world DESIS data: Significant relationship between endmember diversity from DESIS data and *in-situ* measured taxonomic Simpson index and phylogenetic evenness in prairie grasslands. These results are from 100 240 m × 240 m plots and their corresponding spectra at the Joseph H. Williams Tallgrass Prairie Preserve, Oklahoma.

Endmember Simpson index