Evaluating consistency between total column CO₂ retrievals from OCO-2 and the *in-situ* network over North America: Implications for carbon flux

Bharat Rastogi^{1,2}, John B. Miller², Micheal Trudeau^{1,2}, Arlyn E. Andrews², Lei Hu^{1,2}, Marikate Mountain³, Thomas Nehrkorn³, John Mund², Kaiyu Guan⁴, and Caroline B. Alden^{1,2}

- High res. transport model
 used to evaluate OCO-2
 b10 (*LNLG*) data over
 North America
- XCO₂ simulated using 24 combinations of fluxes and boundary conditions (both constrained by *in-situ* obs)
- Potential OCO-2 bias small, seasonally and spatially variable, AND similar to total column flux impacts

NASA CMS: Guan2016

Evaluating consistency between total column CO₂ retrievals from OCO-2 (v10) and the *in-situ* network over North America: Implications for carbon flux estimation

Bharat Rastogi^{1,2}, John B Miller², Michael Trudeau^{1,2}, Arlyn E Andrews², Lei Hu^{1,2}, Marikate Mountain³, Thomas Nerhkorn³, Bianca Baier^{1,2}, John Mund², Kaiyu Guan⁴ and Caroline Alden^{1,2}

¹Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO, ² NOAA Global Monitoring Laboratory (GML), Boulder, CO, ³Atmospheric and Environmental Research Lexington, MA, ⁴Department of Natural Resources and Environmental Sciences, College of Agriculture, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL

Introduction

- Carbon climate feedbacks are a key source of uncertainty in ESMs.
- In part due to the inability of measuring large scale biosphere-atmospheric carbon fluxes, e.g. GPP
- Inverse models infer net surface flux from measurements of CO₂ mole fraction, but are limited by spatial coverage of measurement networks

 $\chi^{P}_{CO_2}$

101, 201,

Satellite retrievals of total column CO₂ mole fraction (XCO₂) can fill this gap, but these need to be highly precise since even <u>large surface</u> flux signals are mediated in the total column by atmospheric transport

To evaluate satellite retrievals and assess potential bias, we compare OCO-2 with CO₂ columns over North America (NA) constrained by in-situ data calibrated to the WMO X2007 scale

Methods

- We use STILT transport model and WRF meteorology ୍ଥ କ to generate sensitivity matrices corresponding to XCO₂ retrieval locations (receptor) 2s along-track over temperate NA and 4s along track over boreal NA.
- NA.
 WRF-STILT run at 10 km x 10 km over temperate and المعلى at 30 km x 30 km over boreal NA
- Background from 4-D mole fraction fields
- Biospheric flux (NEE) estimates from CarbonTracker Lagrange¹ optimally consistent with in-situ CO₂ surface observations calibrated to WMO X2007 scale
- 4 realizations of background x 6 NEE ensembles = 24 flux background combinations

(CT 2016, CT 2019B, CAMS v18r3, Jena-Carboscope v4.3)

when projected onto the total column [ppm]

¹Hu et al., 2019; Sci adv. ^{eq.1}ACOS Data users guide.