LONG-TERM TRENDS IN TIDAL WETLAND GROSS PRIMARY PRODUCTION OBSERVED FROM SATELLITE

1. Motivation

- ullet
- production (GPP)
- response to climate and land use
- model (Feagin et al., 2020)

- 90% tidal wetlands

Raymond Najjar^{1*}, Maria Herrmann¹, Jose Fuentes¹, **Russel Feagin², Thomas Huff², Joshua Lerner²**

¹Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania, USA ²Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA

4. What's driving the GPP increase?

To determine the contributions of input variables (EVI, T, and SWR) to the GPP increase, we first constructed mean annual cycles of

- variables with their mean annual cycles
- the next

5. Future work

- in the contiguous US.

Reference: Feagin et al., 2020. Tidal wetland gross primary production (GPP) across the continental United States, 2000–2019, Global Biogeochemical Cycles, 34, doi: 10.1029/2019GB006349.

Acknowledgements: This research is supported by NASA's Ocean Biology and Biogeochemistry Program and NASA' grant number 80NSSC21K0685.

• We then reran the BC model by replacing two of the input

For example, the "EVI only" simulation fixes T and SWR at their mean annual cycles and allows only EVI to vary from one year to

• The results show that EVI, T, and SWR contribute 55%, 35%, and 15%, respectively, to the long-term GPP increase

• We plan to apply the same analytic approach to all tidal wetlands

• We will investigate possible causes for long-term EVI increases