Does the early bird catch the plume?

Choosing the optimal overpass time for targeting anthropogenic point sources

Criterion	Before noon	After noon	$\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$
Cloud cover	\checkmark		
Plume detectability	\checkmark		
Wind speed		\checkmark	
Land-sea breeze	•		
Emission quantification	?	?	Knowledge for Tomorrow

Julia Marshall¹, Klaus-Dirk Gottschaldt¹, Patrick Jöckel¹, Bastian Kern¹,

^{ITĂT} André Butz², Anke Roiger¹

¹Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ²Institut für Umweltphysik, Universität Heidelberg, Heidelberg, Germany

Cloud cover data from EPIC:

- Earth Polychromatic Imaging Camera at L1 point
- Provides images of the sunlit half of the earth
- Data every 1-2 hours: less frequent than geostationary, but globally consistent
- Assessment of cloud fraction for local overpass times from 8:00-16:00
- 8-km resolution at nadir

clear

prob. clear

 Analysis at 0.1° resolution using data from 2017-2018

EDGAR > 1 MtCO₂/year + landmask

probably

confidently

clear

clear

Morning overpasses have more cloud-free scenes over land targets.

Plume detectability based on LES simulations for Indianapolis

- 50-m ground resolution with ICON
- Emissions from HESTIA (K. Gurney)
- Simulations here for three days in July, 2019
- Summing pixels with concentrations above the indicated levels, comparing by hour
- No cloud filtering

 Developing turbulence and deepening PBL over the day disperses the plumes

Wind speed analysis as a function of time of day

- Based on ERA5 10-m wind speed for 2019, applying empirical multiplicative factor of 1.4 for effective wind speed U_{eff} (based on Varon et al., 2018; Reuter et al., 2019)
- Analysis restricted to land regions with emissions > 1 MtCO₂/year in 0.1° EDGAR pixel
- Wind speed should be greater than 2 m/s:
 - Lower wind speeds good for detection but bad for source quantification
 - Higher wind speeds lead to lower in-plume enhancements

.4:00-15:00 .5:00-16:00 .6:00-17:00 .7:00-18:00

January

12

10

8

2

0

0:00 - 1:00

1:00-2:00 2:00-3:00

3:00-4:00

5:00-6:00

1:00-5:00

5:00-7:00

8:00-9:00

9:00-10:00 10:00 - 11:0011:00 - 12:0012:00-13:00 13:00-14:00

7:00-8:00

U_{eff} (m/s) 6

The difference is small, but there are more low-wind-speed scenes early.

20:00-21:00

.9:00-20:00 8:00-19:00

Consider land-sea breeze for coastal point sources

- If plumes from coastal point sources are advected over water, glint mode may be required for viewing (for e.g. CO2M), or plume may simply not be seen (for e.g. CO2Image)
- Land-sea breeze circulation can impact diurnal wind direction near the coast: on-shore during the day and off-shore at night
- Analysis based on European "Nature run" simulations from CHE project at 5-km resolution, looking at anthropogenic XCO2 signal in coastal land and sea pixels (within ~30 km of coast)

XCO, (ppm), 11.02.2015 13:00 UTC

Essentially identical as seen at this scale for this region.

Emission estimation as a function of overpass time

- What really matters is the impact on L4 emissions estimates – more difficult to assess
- Working towards OSSEs based on LES simulations
- OCO-3 snapshot scenes also provide some "real-world" scenes, given variable local overpass time – assessment is ongoing...

Before noon	After noon
More cloud- free scenes	More clouds
More detectable plumes	More turbulence and mixing
Slightly lower wind speeds	Slightly higher wind speeds
Residual layer interference?	Well- developed mixing layer

More "good" retrievals in snapshot mode before noon... but what can we say about the fluxes?

More hints from OCO-3 in snapshot mode (in answer to Arronne's question)

Data from 08.2019-02.2021

Fraction of "good" OCO-3 SAM soundings as a function of SZA Fraction of "good" OCO-3 SAM soundings as a function of VZA raction of "good" OCO-3 SAM soundings as a function of airma

