Changing sensitivity of carbon exchange to atmospheric and soil moisture controls the response and recovery of carbon stocks in tropical South America from the 2015-2016 El Niño

Junjie Liu^{1,2*}, Kevin Bowman¹, Paul Palmer^{3,1}, Joanna Joiner⁴, Paul Levine¹, Anthony Bloom¹, Liang Feng³, Sassan Saatchi¹, Michael Keller^{5,1}, Marcos Longo^{6,1}, Alex Konings⁷, David Schimel¹, Paul O. Wennberg²

- The loss of total carbon pool over tropical south American (tropical SA) due to 2015-2016 drought has not recovered till the end of 2018;
- Carbon fluxes (i.e., GPP and NBE) has faster recovery rate than carbon pools.

	Drought				Post-drought	
	SW-EBF	NE-EBF	Savanna	SW-EBF	NE-EBF	Savanna
∆(vpd) (hPa)	41.7	55.8	99.5	11.5	10.2	-38.0
∆(TWS) (mm)	-20.4	-84.3	-110.1	NA	NA	NA
∆(WUE) (%)	-4.0±	-1.5	-0.8	-0.49	0.89	4.7
Δ (GPP) (GtC)	-0.21 <u>+</u> 0.07	-0.50 <u>+</u> 0.10	-0.46 <u>+</u> 0.10	0.04 <u>+</u> 0.07	0.11 <u>±</u> 0.09	0.10±0.09
$\Delta GPP^{\{\frac{dC}{d(climate)}\}_{pre}}$	0.04 <u>±</u> 0.03	-0.05 <u>+</u> 0.07	-0.56 <u>+</u> 0.06	0.09 <u>±</u> 0.01	0.10±0.01	0.02 <u>±</u> 0.02
$\Delta GPP^{change-sens}$	-0.25 <u>±</u> 0.08	-0.45±0.12	0.10±0.12	-0.05±0.07	0.01±0.09	0.08±0.09
∆ (NBE)	0.24 <u>+</u> 0.08	0.67 <u>+</u> 0.12	0.24 <u>+</u> 0.08	-0.34 <u>+</u> 0.08	-0.24 <u>+</u> 0.12	-0.06±0.16
$\Delta NBE^{\{\frac{dC}{d(climate)}\}_{pre}}$	0.10 <u>+</u> 0.03	-0.12 <u>+</u> 0.07	0.10 <u>±</u> 0.07	0.08±0.01	-0.17 <u>±</u> 0.02	-0.07 <u>+</u> 0.16
$\Delta NBE^{change-sens}$	0.14±0.09	0.89±0.14	0.14 <u>±</u> 0.08	-0.42±0.08	-0.07±0.12	0.01±0.23

- Changing sensitivity of carbon fluxes to VPD greatly increases GPP reduction and NBE increases over the forest due to drought.
- The drought legacy effect slows GPP recovery but accelerates net carbon uptake during post-125 drought over SW-EBF.

© 2021, Caltech

- The absolute GPP-VPD sensitivity increases during drought over both forest regions, but decreases over savanna/shrubland, reflecting enhanced land-atmosphere coupling and different adaptive strategy to drought among these regions;
- The overshooting recovery of GPP over savanna/shrubland is due to the enhanced absolute sensitivity of GPP to VPD.
- The NBE-VPD sensitivity increases during drought over all three regions, with increased GPP-VPD sensitivity as dominant contributor over the forest and the increased sensitivity of total ecosystem respiration (TER) as dominant contributor over the savanna/shrubland.
- The increased NBE uptake during postdrought over SW-EBF is primarily caused by the changing TER-VPD sensitivity.

The changing GPP-VPD sensitivity during drought is supported by fluxtower observations

The changing GPP-VPD sensitivity during drought and post-drought is consistent with the changing sensitivity of NIRv and SIF to VPD during different drought stages

Enhanced land-atmosphere coupling, different adaptive strategies to drought stress, and the interactive effect between air aridity and soil water content deficit causes the changes of GPP-VPD sensitivities; changing sensitivity of TER to VPD further contributes to the changing GPP-VPD sensitivity.

