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MOTIVATION
Degradation of Earth’s inland  and coastal water resources due to anthropogenic 
perturbations and climate anomalies at both local and global scales continues to 
place human health at substantial risk. There is now a growing necessity to develop 
pragmatic approaches that allow timely and effective extrapolation of local 
processes, to spatially resolved global products, and to promote operational and 
sustainable resource policy management1. This presentation will provide updates 
on NASA’s prototype open-source aquatic modeling platform, Spectral Water 
Inversion Processor and Emulator (SWIPE), which is a comprehensive, multi-
faceted modeling platform for both forward and inverse modeling of diverse 
aquatic ecosystems from the benthos to top-of-atmosphere (TOA). SWIPE provides 
a cohesive application which leverages recent advancements in particle modeling, 
Big Data analytics, and machine learning to develop a high-fidelity synthetic 
training ground for sensitivity studies and algorithm development for multispectral 
or upcoming hyperspectral missions.

Distributed Equivalent Algal Population (DEAP)
2-Layer Coated Sphere Scattering Model

SWIPE Pipeline

Core Layer = cytoplasm or 
vacuole

Shell Layer = 
Chloroplast (pigments)

- Population IOPs integrated across entire size distribution – represents 
combined bulk optical signal for algal assemblage 

- incorporates individual biophysical cellular characteristics into 
assemblage-based optical properties as observable in situ

- Facilitates IOP variability as due to environmental forcings2

EAP

In vivo

2.8 kgm-3

Deff = 4-8 
µm

Seven mineral spectral 
libraries composed of 
varying contributions 
of the major crustal 

elements: 

Al,  Fe,  Ca, Mg, K, Ti, 
Ba, Sr, Zn, Mn, Ni, Cr, 

and V

And scaled to different 
PSDs, particle density, 

junge distributions

Hyperspectral particle optics for 70+ species of phytoplankton (~16 Classes)
(Example of Rhodophyte P. Cruentum)

Pigment 
Packaging
Effect

EAP facilitates 4 main 
drivers of phytoplankton 

optical variability

1. Biomass
2. Pigments
3. Cell size
4. Intracellular chl-a (ci)

Specific Absorption (Generalized Cryptophyte)

FORWARD MODEL
Processes

• Oligotrophic cases
• Extremely absorbing 

(CDOM) and extremely 
scattering cases (Sediment)

• Harmful algal blooms (Cyanobacteria, 
Marine coastal)
• Optically shallow waters
• Variable functional type derived chl-a 

fluorescence 
• Variable surface sunglint
• NASA AERONET database (atmosphere 

optical diversity)
• Global benthic mixing model
• Global Adjacency mixing model
• Sensor noise model

ANALYSIS READY DATA (ARD)
Clustered Hyperspectral (2nm) 

Reflectance Dataset

DEEP LEARNING

Simulated to Real Hyperspectral Estimations (Chl-a)

Synthetic
N= 13,000
R = 0.93

Field
N= 260
R = 0.85

Uncertainty Quantification 
by Optical Water Type

Deep ensemble networks have the potential 
to provide robust uncertainty estimates at a small 
computational cost. Between leveraging 
uncertainty quantification and optical water 
types, we can create more advanced ML models 
with more interpretability

SENSOR AGNOSTIC PROCESSING
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Attenutaion (c) 670nm

Attenutation 670nm without Sunglint in training data (m-1)

Attenutation 670nm with Sunglint in training data (m-1)

0.1

1

10

60

PC
 (m

g/
m

3 )

Per-pixel
Uncertainty

PC
 (m

g/
m

3 )

Phycocyanin
Concentration

Chl-a concentration (mg/m3) Phytoplankton absorption
440nm (m-1)

Non algal particle 
concentration (mg/m3)

Phytoplankton backscatter
440nm (m-1)

HICO – Lake Erie, USA  Direct retrieval from top-of-atmosphere
Decouple inorganic and organic optics >> GLOBAL COASTAL/INLAND WATER CARBON STOCKS

Non algal particle 
absorption 440nm (m-1)

Non algal particle 
backscatter 440nm (m-1)

Mineral Backscatter 440 nm (m-1) Phytoplankton Backscatter 440 nm (m-1)

EMIT – Bahia Blanca, Argentina
Leveraging new orbiting imaging spectrometers to test experimental next-generation algorithms

AVIRIS-NG – Mississippi Delta, USA
Beam attenuation 670 nm estimation with sunglint correction

DESIS – Clear Lake, CA USA 
Water column constituent estimation with per-pixel uncertainty
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