

A Computational framework for hyperspectral radiative transfer modeling and deep learning emulation for global water quality applications at scale **NEX** Jeremy Kravitz^{1,2}, Liane Guild¹, Lisl lain^{3,4}, Steffen Mauceri⁵, Nick Lahaye⁵, Laurel Hopkins^{5,6}, Ian Brosnan¹ ³Earth Systems Earth Observation Division ,CSIR, Cape Town, South Africa ⁵Machine Learning and Instrument Autonomy Group, JPL, Caltech, CA, United States ⁴Department of Oceanography, University of Cape Town, South Africa ⁶Oregon State University, OR, United States FORWARD MODEL

¹Biospheric Science Branch, NASA Ames Research Center, CA, United States ²NASA Postdoctoral Program, Oak Ridge National Laboratories, TN, United States

high spatial and temporal resolutions based on a synthetic data and machine learning approach. Frontiers in Environmental Science, 9, 587660.

