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Ongoing investigations:

Additional landscape changes including significant greening (shrub
growth), and fire are being assessed using Landsat, Sentinel, and Planet
Labs data archives.

Introduction and Approach:

Van Tat (Old Crow Flats; OCF), Yukon is the traditional territory of the Vuntut Gwitchin First Nation
who are concerned of climate change impacts across the landscape and on water resources (Fig. 1).
Notable landscape responses include lake drainage, thaw slumps, shrub growth, and fire. The last
17 years has seen wet summer conditions to 2019 followed by drier summers and more snowfall
during winter (e.g., Fig. 2). Here, we describe ongoing research integrating biogiochemical analyses
and remote sensing to identify changes and associated downstream biogeochemical impacts.

Greening trends during 1986 - 2023 was statistically significant
(Mann-Kendall p < 0.05) in OCF, especially across the south-facing
ecotone and low-lying areas in the eastern Johnson Creek

. _ subcatchment (Fig. 9). There has also been significant browning in the
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Fig. 9. Mann-Kendall trend analysis of NDVI for 1986 - 2023. Significant (p<0.05) values and slope represented green and brown gradients.

Key Findings: A widespread tundra fire burned across the eastern OCF during Aug
- Inter-annual differences in water masks highlight recent lake drainages (Fig. 3) o L NS | RO N ORI Ll e | 2023 (Fig. 10). Land cover classification revealed it was ~580 km?2, which
- Water mask interannual differences identify wet vs. dry years and reveal overall stability at the o K=, N 8 was the most widespread fire at this latitude within the Canadian record

watershed-scale for 2006 - 2023 (Fig. 4). SRR o N A SRSEALE % since 1986 (Canadian Wildland Fire Information System Datamart, 2024

- Deuterium-excess (isotopes) are more variable late in the record with low values indicating
greater lake input (Fig. 5).

- Isotope mixing model shows seasonal and interannual timing of source water

proportions. The Schaeffer Creek (SC) sub catchment shows elevated lake water contributions

during fall late in the record (Fig. 6).

- Some temporal correspondence was found between water mask interannual differences (lake
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(e.g, higher DOC). Higher order creeks show mixing from these two categories.
Fig. 4. Time series of interannual water mask differences for a) low to c) high order creek subcatchments. . atitude "
.. : : : : is Spring s Fall  Canadian Fires 1986-2022 #2023 OCF Fire
Similar tc? the southern headwatfer creeks, peripheral lakes with large .catchm.ents h.ave higher nutrlgnts (e.g., Sl 0 creeks| ) akes —— i 11 Seatteriot of burn arca nd attude. Fig. 12. Photograoh from helicopter on 2.565.2023
DOC) while more central lakes with small catchments have lower nutrients, higher ions, DIC, and C isotope ped ap . . .
Ezo .;. T _;_ , 20 - + | - + ;'_; . o B .
values. N = = T =& | The fire spanned across 7, | = 83 I
6 . *_;-0-5 T 0-5- 1 ' : 1 é‘ 40 — -a:’é “7 T
Water chemistry results show that the ot N e R wetland and drainage channels : . I 58] | -
\ o ™ proportion of lake source water increases with ] T — (Fig. 12) that are upstream ° | | iy .
- . 1.0 1 . 1.0 - s e . pre-fire (n=13) post-fire (n=7) pre-fire (n=13) post-fire (n=7)
o oo hoc stream order (Fig. 7, 8). = S T R : | from our existing I(?ng-term T 9 -
5 @0 @ ‘ 090 S LT P I | T T water hydroecological 3 T 3"
- 13 e = 04 - 1 04 ] . . . = 16+ E71 T
RERL Y INE ImpisReTREeseaEage |P9 2. | | FHE Ll montoringsites bFanaic o | 25 s
Oj g ' B ' < - - . £ 124 T
S S~ NGV T = W 'S FF ] 1, v x5 | gybcatchments). We will be 3 S %
< - o=\ 4Ms B o frequency and overall enhanced o | E o ME pom| S s fan . Wl : B ,
N e = - ‘. r H B ’. I k . « oII I . 14 - : s % 14 1 . | 'i' I__i__l . Sampllng Water from these pre-fire (n=13) post-fire (n=7) pre-fire (n=13) post-fire (n=7)
- ' . . s | 3 ' R + ) ] 32 9
% \ - ....t - ' | O a e rlver COnHECUVIty WI resu t In %1_2_ 'i' + T | T . + 1o ] 'i' T | - '?' Sltes durlng June 2024 to %3_0_ T . '|'
_ 1 E1o- | 10 - I . . £7%%7 ‘:5'.: . .
2 .'l."'."I greater export of nutrients (e.g., DOC, o T RS N T T evaluate impacts of the fireon e+ . 2 I
= o . : : . . . D > QO 6+
O TN, TP) dOWStream. ThlS may be 0s{ downstream’ : . | 061 - : a suite Of blogeOChem|Ca| cgé’z-z' J ? . 1 J
-4 1 S|02 : T 0o Md Down | Evep Snow Ram o T 05 Md Downl Bvap Snow Rain ?-:_ ~ A
JC3, JC4, 803, SC4 en ha nCEd by CatCh ment green I ng (e'g‘] 2:5 | 2:5 [ pa ra mEterS. | pre-ﬁrtle (n=13) post—ﬁ;e (n=7) pre-ﬁr:e (n=13) post—ﬁlre (n=7)
® Lake o . 20 4 . | 90 | Fig. 13. Lake water chemistry comparison before and after catchment fire in 2017.
B River increases in catchment carbon _ | . . T
6 . . . . . . . I e G L e e % These data will be compared to lake water chemistry identified at an OCF
6 -4 2 0 2 4 s sequestration), or altered by fire. Qe i . = 1= - monitoring lake (OCF55), where its catchment burned during 2017 (Fig. 13).
AXis 1 (33.6%) S BT 1T Here, found increases in phosphorus, calcium, magnesium, and SO4, and
Fig. 7. Multivariate exploration of biogeochemical parameters. Point size represents catchment size. 0.0 H— Do-Wn' A ——— T oo 'Ev-ap p———

decreases or reduced variability in DOC and potassium.

Fig. 8. Boxplots of water chemistry comparison among low-high order creeks and lakes.



