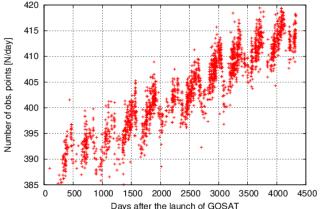
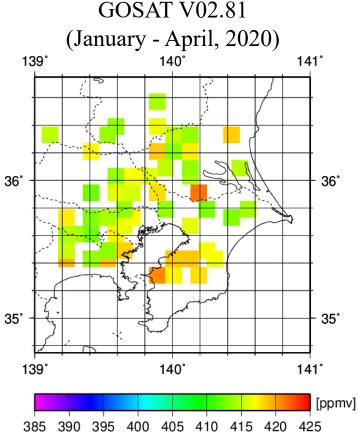
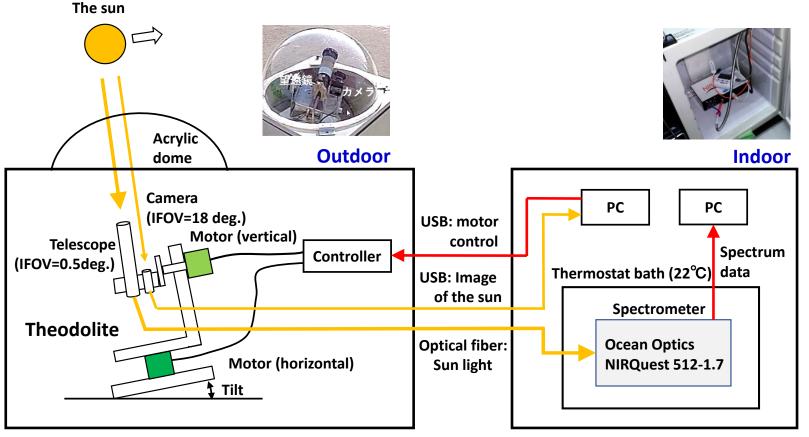
Ground-based measurements of XCO2 using grating spectrometers for validating GOSAT target observations over the Greater Tokyo Area


Ryoichi Imasu¹, Yutaka Matsumi², Isamu Morino³, Masafumi Ohashi⁴, Masahiro Kawasaki⁵, and Asaka Hasegawa¹


1: Atmosphere and Ocean Research Institute, The University of Tokyo, 2: Institute for Space-Earth Environmental Research, Nagoya University

3: National Institute for Environmental Studies, 4: Graduate School of Science and Engineering, Kagoshima University, 5: Research Institute for Humanity and Nature

GOSAT target observation



- GOSAT target observations over the Greater Tokyo area (Kanto Plain) have been conducted by the science team from 2010
- "Compact Array Spectrometer Targeting Local Emissions of CO₂ (CASTLE-CO₂)" has been developed to validate satellite data and transport simulations
- CASTLE-CO₂ has been operated at 5 sites in Kanto Plain covering both urban and suburb area from 2020
- XCO2 observed by a CASTLE-CO₂ were compared with TCCON data at NIES, Tsukuba, and the results showed good agreement

Instrumentation: CASTLE-CO₂

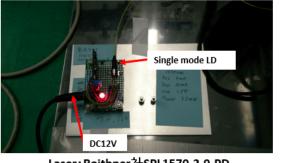
- CASTLE-CO₂ consists of a sun tracking system (field camera and telescope on a theodolite) and a grating spectrometer connected to a telescope by fiber cable
- Sun tracking system is kept in an acrylic dome and is not needed to be covered even under the rain condition
- The system can be automatically operated and the data can be downloaded remotely via the internet

[Specs]

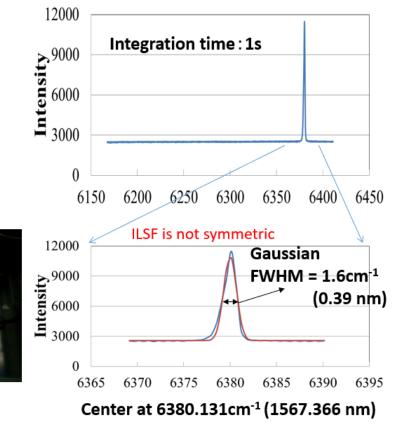
Spectrometer : NIRQuest512-1.7 (512 pixels)


Entrance Slit : 200 μ m

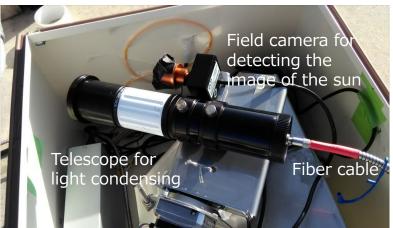
Grating NIR14, 900 - 1700 nm, 1000 l/mm, Blazed at 1310 nm High signal-to-noise ratio: 15,000:1 to 7500:1,Spectrometer


High Resolution: from <1nm to 12nm (slit and detector dependent) to suit your application
Small and lightweight: 182 x 110 x 47 mm and 1.2 kg
16 bit, 500KHz A/D converter
USB 2.0 480Mbps :

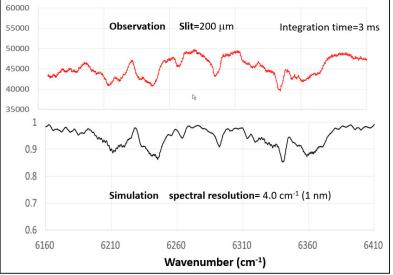
Characterizations of CASTLE-CO₂


Measurement of dark current

Measurement of ILSF



Laser:Roithner社SPL1570-2-9-PD, Deriver board:Thorlab LD1100 Output:Max 2.5 mW

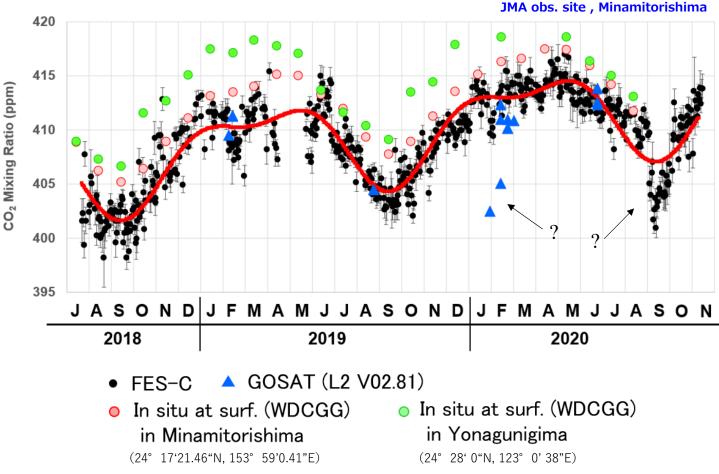


- ILSF was measured using single mode laser diode. Spectral resolution was evaluated to be 1.6cm-1 (FWHM).
- Dark current was measured using a white light in the laboratory

Sun tracking system

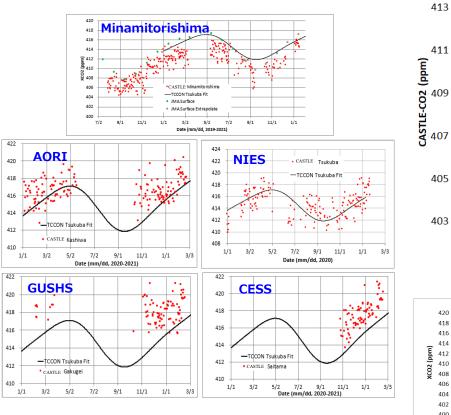
Comparison with simulated spectra

Observation sites



1 Tokyo Gakugei University Senior High School (GUSHS), Tokyo [Urban] (35° 38'4.40"N, 139° 40'40.07"E) ②Atmosphere Ocean Research Institute, The University of Tokyo (AORI/UTokyo), Kashiwa [Suburb] (35° 54'10.00"N, 139° 56'21.30"E) ③Center for Environmental Science in Saitama (CESS), Kasu [Suburb] (36° 5'6.85"N, 139° 33'36.27"E) ④National Institute for Environmental Studies (NIES), Tsukuba [Cal./TCCON] (36° 3'0.33"N, 140° 7'8.63"E) (5) Japan Meteorological Agency (JMA) observatory, Minamitorishima (remote island) [Background]

(24° 17'21.46"N, 153° 59'0.41"E)



Results (FES-C)

- Fiber-Etalon Solar Measurement for Carbon Dioxide Sensor (FES-C)*, which can measure XCO2, has been also operated on a remote island, Minamitorishima, from 2018
- Two years observation shows a clear trend of XCO2
- Unlike the data observed at other sites on land, the data on the island were low from February to March just before the annual maximum
- During the observation period, about 10 collocated measurements were performed with GOSAT (Sun glint observation) observations, and the results were fairly consistent
- Sometimes very low were observed by both GOSAT and FES-C

Results (CASTLE-CO₂)

v = 0.984x $R^2 = 1$ 413 411 405 403 410 412 414 416 418 420 TCCON (ppm) Before bias correction 420 TCCON 418 416 414 412 410 408 406 404 402 400 1/13/1 6/29 8/28 10/2712/26 Date (mm/dd. 2020)

Comparison with TCCON

After bias correction

The original values measured by the CASTLE-CO₂ have positive bias of about 7 ppm against TCCON data (Tsukuba), and they can be reduced to about 1 ppm after applying a scaling factor (0.984)

- The characteristics of seasonal variations in XCO2 observed by the four CASTLE-CO2 installed in the greater Tokyo area differ from site to site. The three sites in Tokyo, Saitama, and Chiba show higher values than the TCCON site in Tsukuba
- The peaks appeared in the early winter season tend to be weaker than those of in situ measurements at ground observations as reported by Imasu and Tanabe (2018)

Acknowledgement

This study has been partially supported by the Ministry of the Environment.

References

Kawasaki, M., M. Ohashi, and G. Inoue, Measuring carbon dioxide emissions with a portable spectrometer, SPIE Newsletter, 10.1117/2.1201301.004659, 2013. Imasu, R. and Y. Tanabe, Diurnal and Seasonal Variations of Carbon Dioxide (CO₂) Concentration in Urban, Suburban, and Rural Areas around Tokyo, Atmosphere, 9(10), 367, doi:10.3390/atmos9100367, 2018.