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Modeling individual tree mortality in the Sierra Nevada in response to the 
2012-2016 California drought

To what extent can we model individual tree 
mortality risk in the Sierra Nevada in response 
to a severe drought using random forests, 
extreme gradient boosting, and neural 
networks? 

Central Question

Acknowledgments

Methods
• We used a set of more than 1 million trees mapped from 

LiDAR and multispectral data from the National Ecological 
Observatory Network (NEON) for two sites in the Sierra 
Nevada for the years 2013, 2017, 2018, 2019, and 2021.

• We partitioned the data set into a 60/20/20% split of training, 
validation, and testing data.

• We chose our target variable to be whether a tree is dead in 
2017.

• We tested three machine learning methods: (1) random 
forests, (2) extreme gradient boosting, and (3) neural 
networks.

• We resampled the training and validation data to have an 
even number from each class (live and dead) for each 5th-
percentile of tree height to avoid a height-based bias.

• We performed a hyperparameter search for each of the 
model types.

• For the best model of each type, we shuffled each variable 
one at a time to quantify its importance.

Background
• California experienced a severe drought between 

2012 and 2016.

• Tree mortality in some areas of the Sierra Nevada 
was as high as 50%1.

• Droughts like this may be more frequent in the future.

• Modeling tree mortality risk may help inform future 
projections of carbon losses from forests and forest 
conservation efforts.
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Figures 1 & 2. The feature variables for the 
tree mortality models are mapped at the two 
sites to visualize the spatial patterns of each 
one. Each model is run at the level of 
individual trees.
• The metrics in a-c are derived from 2013 

NEON LiDAR point clouds. (We assumed 
that these metrics have not changed 
significantly since 2011.)

• Pre-drought normalized difference 
vegetation and moisture indices (NDVI 
and NDMI, respectively) in d-e are 
computed from September 2011 Landsat 
data. 

• We computed evapotranspiration (ET) for 
f following the methods of Norlen and 
Goulden2 and averaged annual ET from 
2009-2011. 

• We derived granite fraction for g from 
NEON canopy height model and 
multispectral reflectance data. 

• We calculated distance to rivers between 
our tree locations and rivers for h from 
the high-resolution National Hydrography 
Dataset. 

• We derived slope and aspect for i-k from 
NEON’s digital terrain model. 

• Climate variables in l-q are derived from 
1-km Daymet data.

• Extreme gradient boosting performed the best for tree mortality prediction and had an accuracy 
of 66.8% on the validation data set.

• The most important predictors of individual tree mortality were tree height, mean minimum winter 
temperature during the drought, and mean annual precipitation during the drought.

• Our next steps include resampling our training and validation data sets to reduce bias among 
additional feature variables such as mean minimum winter temperature during the drought.

The background elevation and aspect 
are mapped from NASA SRTM data

Tables 1 & 2. We trained a model on the training data 
set and used the validation data set to select the best 
hyperparameters for each model. We show the training
and validation data confusion matrices for the optimum 
hyperparameters of the best model (extreme gradient 
boosting) after penalizing for overfitting. 

Table 3. We used our best hyperparameters for each model type and trained a model on 
the combined resampled training and validation data set. We shuffled the input variables 
one at a time to obtain the accuracy of the model on the combined resampled training and
validation data. We show the top ten feature variables for the best model (extreme 
gradient boosting). The bold font shows the top three from each model. Not shown is 
mean dry season temp. during the drought which yielded 57.3% accuracy on the fitted 
neural network when shuffled.

Shuffled Feature Extreme
gradient
boosting 
accuracy (%)

Random 
forests
accuracy
(%)

Neural 
networks
accuracy
(%)

Tree height 61.9 60.5 60.1

Mean min. winter temp. during the drought 62.9 52.6 59.7

Mean annual precipitation during the drought 65.1 63.8 58.8

Mean baseline dry season temp. 65.4 65.8 58.0

Mean baseline annual precipitation 65.8 64.3 56.8

NDVI before the drought 66.0 64.3 63.7

Canopy cover 66.5 65.3 64.3

Slope 66.7 64.6 64.7

Distance from rivers 66.7 64.9 65.0

NDMI before the drought 67.2 65.6 63.9

No features shuffled 67.7 65.8 65.8

Training 
data and 
validation 
data

Modeled 
dead

Modeled 
live

Class
accuracies

Observed 
dead

228,857 180,810 55.9%

Observed 
live

83,043 326,632 79.7%

Test data Modeled 
dead

Modeled 
live

Class 
accuracies

Observed 
dead

73,998 62,211 54.3%

Observed 
live

23,132 108,087 82.4%

Table 1. Resampled training data confusion matrix. 
Accuracy on training data: 67.8%

Table 2. Resampled validation data confusion matrix. 
Accuracy on validation data: 66.8%

Results

Figure 1. Feature variables for Soaproot Saddle

Figure 2. Feature variables for
Lower Teakettle
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Figure 3. The observed and modeled mortality fraction for Soaproot Saddle (left) and Lower 
Teakettle (right). Resampling the training and validation data set to avoid a climate-driven 
bias may help reduce extreme values at both sites.


