The recent improvements in the air- and self- broadened CO_2 and N_2O spectroscopic line-shape parameters in HITRAN2020 database

<u>R. Hashemi</u>, I. E. Gordon, H. Tran, E.V. Karlovets, R. V. Kochanov, Y. Tan, J. Lamouroux, L. S. Rothman, N. H. Ngo, E.M. Adkins, J.T. Hodges, D. A. Long, M. Birk, C.D. Boone, A. Predoi-Cross, J. Loos, A.J. Fleisher

CENTER FOR

ASTROPHYSICS

HARVARD & SMITHSONIAN

Overview of CO2 and N2O line lists in HITRAN2020

- The HITRAN database is an excellent resource for reference spectroscopic data for atmospheric applications.
- For each transitions of CO₂ & N₂O, the line-shape parameters were updated using the Voigt and speed-dependent Voigt (SDV) profiles.

Why CO_2 and N_2O line-shape parameters were revised with respect to HITRAN2016

- Vibrational dependence of line widths was excessive for some of the bands due to the semi-classical calculations.
- In the spectral region covered by the OCO-2 mission, the line widths were based on the SDV profile, with no speed-dependence parameter provided.
- The model for predicting the pressure shifts (δ) assumed they were the same for the P and R branch lines (where m = –J for the P branch lines and m = J + 1 for the R branch).
- o No SDV parameters for line widths were provided
- No first-order line-mixing parameters provided in the database explicitly, although a FORTRAN routine for calculating line mixing was provided.
- $\circ~$ The Voigt (VP) line- shape parameters of N₂O had not been modified since the release of HITRAN2004.
- Also, for efficient applicability of the database, it is important that the advanced lineshape parameters be available for as many lines as possible and not just for selected transitions

General approach for revising the line-shape parameters for CO2 and N2ODescription1. Selected broadening parameters with their temperature dependence, andAir-broade

- speed dependence from different studies in different bands were compared.
- 2. A negligible vibrational dependence was observed for broadening, and semiempirical models (using the Padé approximants) were used to interpolate/extrapolate the data.
- 3. The results were validated against laboratory and/or atmospheric spectra
- 4. The Voigt (VP) and SDV parameters were populated in separate data tables.

$\begin{array}{|c|c|c|} \hline \textbf{Description} & \textbf{Symbol} \\ \hline Air-broadening & γ_0-air \\ \hline Self-broadening & γ_0-self \\ \hline Temp. exponent of air-width & n-air \\ \hline Temp. exponent of self-width & n-self \\ \hline Air-shift & $delta_air \\ \hline Self-shift & $delta-self \\ \hline \end{array}$

The speed-dependent parameters

rCMDS SDV (scaled)

Padé Approxi SDV

-20

NIST,2020

-60

Devi et al, 2016 30013-00001 SDV [48]

Long et al, 2015 30012-00001 pCSDNG [27]

60

80

Bui et al, 2014 20013-00001 pCSDNG [29]

m

0.095

0.090

0.085

0.080

0.075

0.070

0.065

0.060

0.055

0.050

 γ_0 -air (cm⁻¹atm⁻¹)

The speed dependence of airbroadening half widths of CO₂ versus |m| using the SDV and speed-dependent Nelkin-Gatak (SDNG) profiles.

Nguyen et al, JQSRT,242 (2020) 106729. Bui et al, JCP, 141 (17) (2014) 174301 Devi et al, JQSRT, 177 (2016) 117-144 . Wilzewski et al, JQSRT, 206 (2018) 296-305. Birk et al, 2021, Private communication Daneshvar et al, JQSRT, 2014;149:258–74

The air-broadening half widths of CO_2 versus |m| deduced using the SDV profile and fitted using the Padé function.

Update of the CO LM package:

The line mixing package for CO_2 was updated. The approach by Lamouroux et al.[1] is used for predicting the line-mixing effect in all the bands of CO₂ either accounting for the full line mixing (W) or the first-order approximation (Y):

1) VP+ first order LM

2) VP+ full LM

3) SDV+ first-order LM. This Fortran package is available at HITRANonline: https://hitran.org/supplementary/

Validation using laboratory spectra

0.024

Predoi-Cross et al, 2007 EPG 30012-00001 [35]

PS Lamouroux et al, 2015-routine 30012-00001

-20

20

m

60

80

Ο The HITRAN Application Programming Interface (HAPI) was adopted to include Y parameters.

Best residuals: \bigcirc i) Voigt+Full line mixing ii) Speed dependent Voigt+First-order line mixing

Updating the SDV parameters group for N₂O

Validation N₂O spectroscopic parameters

a: The FT transmission spectra of N₂O-air at T = 293.8 K, total P = 40 kPa The bottom panel shows the improved residuals when using HITRAN2020 parameters **b**:ACE-FTS analysis results from occultation sr10063. Fitted residuals for a tangent height near 18.2 km and 17.5 km using VP parameters from HITRAN2016 (in pink) and SDV parameters from HITRAN2020 (in green).

ACE-FTS analysis results

ref: Hashemi et al, JQSRT, 271 (2021) 107735 and the references therein.

Conclusions and acknowledgement:

- \circ Revision of line broadening and line shifts of the air and self-broadening CO₂ and N₂O lines with their temperature dependence parameters.
- o Addition of the speed dependence of the broadening with their temperature dependence for every transition.
- o Addition of the first order line mixing and their temperature dependence for each of the allowed transition.
- Improvements for both line lists in HITRAN2020 when validated using the laboratory and atmospheric spectra.
- We would like to thank all collaborators who helped in providing us with data and validating the results.
- Also, we thank our funding resource, NASA HITRAN grants.

