

Atmospheric Environment: X Volume 10, April 2021, 100110

Analyzing nitrogen oxides to carbon dioxide emission ratios from space: A case study of Matimba Power Station in South Africa

Janne Hakkarainen ^a 兴 ⊠, Monika E. Szeląg ^a, Iolanda Ialongo ^a, Christian Retscher ^b, Tomohiro Oda ^{c, d, e}, David Crisp ^f

Show more 🗸

😪 Share 🍠 Cite

https://doi.org/10.1016/j.aeaoa.2021.100110 Under a Creative Commons license Get rights and content open access

Highlights

- A new methodology to derive source-specific $\mathrm{NO}_x\text{-to-}\mathrm{CO}_2$ emission ratios.
- The method is applied for TROPOMI and OCO-2 satellite observations.
- The mean emission ratio of (2.6 \pm 0.6) \times 10^{-3} is obtained for Matimba Power Station.
- The annual CO₂ emissions for Matimba are ~60 kt/d.
- The emission estimates are consistent with existing inventories such as ODIAC.

See the paper for details: https://doi.org/10.1016/j.aeaoa.2021.100110

- We propose an approach based on scaling the observed ratio along the OCO-2 track with simulated data, to obtain the NOx-to-CO₂ emission ratio at the source.
- Can we derive source-specific emission ratios of NOx to CO₂ directly from space-based data?
- Satellite-based NOx emission estimation methods are based on statistical analysis
- CO₂ emissions from point sources can be estimated using different methods, e.g., Gaussian plume model method (Nassar et al., 2016), Cross-sectional flux method (Reuter et al., 2019), see (Varon et al., 2018) for overview

Background

Methodology

- 1. Select a place of interest and find plumes with both OCO-2 (CO₂) and TROPOMI (NO₂) data
- 2. Simulate CO_2 and NO_2 plumes using FLEXPART Lagrangian particle dispersion model
- 3. Calculate the CO_2 -to- NO_2 ratio at the cross-section from observations and simulations and derive NO_x -to- CO_2 emission ratio at the source (see paper for details)
- 4. Calculate monthly NO_x emissions using data driven approach (e.g., exponentially-modified Gaussian, Beirle et al., Science, 2011)
- 5. Use NO_x -to- CO_2 emission ratio to scale NO_x emissions to CO_2 emissions

Results

 For Matimba power station in South Africa we found 14 collocated plumes between May 2018 and November 2020

Results

- Annual and monthly NO_x emission estimated using wind rotation and EMG fitting
- Annual NO_x emissions are about 40 mol/s (lifetime about 4h)
- Average NO_x-to-CO₂ ratio is (2.6 \pm 0.6)× 10^{-3}
- CO₂ annual emissions about 60 kt/d
- The emission estimates are consistent with existing inventories such as ODIAC

