Fish from space: Predicting mid-trophic levels biogeography via remote sensing and in-situ acoustic data fusion

J. Guiet ${ }^{1}$, K. Srinivasan ${ }^{1}$, C. Wall ${ }^{2}$ and D. Bianchi ${ }^{1}$

${ }^{1}$ University of California Los Angeles; ${ }^{2}$ University of Colorado Boulder.

SUMMARY

We merge EK60 acoustic observation with remote sensing and reanalysis data to quantify the patterns and drivers of variability of MidTrophic Level (MTL) organisms.

Successful machine-learning reconstruction of multi-frequency acoustic backscatter along the US West Coast (USWC) provides new insights into the dynamics of MTLs.

By extrapolating sparse observations, our reconstructions reveal broad-scale patterns of MTL variability (spatial, seasonal, interannual) and elucidate regional drivers of MTL dynamics.

CONTEXT: Mid-Trophic Level (MTL) organisms

Key component of ecosystems (Prey for large marine predators / Modulate carbon flux / Valuable fisheries).

Complex dynamics (Bottom-up and top-down control / Heterogenous distribution / Inter-annual variability). Hard to sample (Trawls \& acoustic data are biased). Goal : Quantify patterns and drivers of MTLs dynamic.

1-TARGET:

1,155 days (62,782 locations at 4 km binning) of processed multi-frequency EK60 acoustic observation along USWC from 2005 to 2016.

Number of seasons
Mean surface ($15-215 \mathrm{~m}$)

Sparse acoustic observations of local MTL abundance. High resolution locally, but with spatial and seasonal limitations.

3-NEURAL NETWORKS (NNs):

Successfully learn the variability of surface (here 15-215m) area acoustic backscatter s_{a} from well-resolved co-located environmental variables.
Overall performance of NNs

Local evaluation
(in seasonal, latitudinal, onshore/offshore
(feed-forward; stochastic gradient descent subdivisions)

Out of Bag (OB) : "Interpolation" performance of NNs (76\% on avg.) Out of Distribution (OD) : "Extrapolation" performance (24% on avg.)

Observed S_{a} in $\mathrm{dB} \mathrm{re}\left(\mathrm{m}^{2} \mathrm{~m}^{-2}\right)$

2-FEATURES:

Co-located environmental observation along acoustic transect (interpolated in 4 km bins) from remote sensing, reanalysis and climatology.

Features that affect the environment experienced by MTLs. Large-scale observation at coarse spatio-temporal scales.

4-RECONSTRUCTIONS:

Reconstructed dynamic of

Reconstructions of MTLs' acoustic distribution provide new perspectives. Next step, link with abundance and community composition from trawls.

