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BACKGROUND METHODS DISCUSSION

Complex non-linear relationships exist between the permafrost thermal state, active layer thickness, and
terrestrial carbon cycle dynamics in Arctic and boreal Alaska. Frozen soil and carbon-rich permafrost
characterizes approximately 14 million square kilometers globally, with soil organic carbon stock
estimated at 130+170 PgC (Hugelius et al., 2014).

- and when coupled with anthropogenic-induced warming - can trigger, accelerate, and sustain
a positive nonlinear carbon-climate feedback for hundreds of thousands of years (Schuur et al., 2015).
The variability and uncertainty of thaw-induced carbon release and feedback mechanisms challenge
efforts to quantify the magnitude, rate, timing, composition, and extent of the

(PCF; Miner et al., 2021), further complicating this issue. The PCF is an emerging
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= The ability to quantify or infer the magnitude, rate, and extent of the PCF and subsurface phenomena with
high confidence across space and time is restricted with remote sensing platforms (Miner et al., 2021; Gay,
et al., 2023; Esau et al., 2023). Due to spatiotemporal limitations, instrument constraints, and other
challenges in the high latitudes (e.g., frequent cloud cover, short summer periods, low illumination angles).

Our study establishes a new methodology for assimilating multimodal data across different observational
platforms. We demonstrate the effectiveness of Al-driven ensemble learning frameworks in modeling
complex permafrost-climate interactions. Our approach overcomes traditional model inefficiencies,
bridges gaps, and resolves spatiotemporal disparities, providing a novel methodology for assimilating

ol [ LA N E N s e contemporaneous information on scales from individual sites to the Pan-Arctic. GeoCryoAl ingests
e | [ F S B I ~15.8B measurements and observations to learn, simulate, and forecast the primary constituents of the
PCF with prognostic and retrospective capabilities. This is

= Subroutines and interactions governing earth system models vary widely, with many overlooking the il L LN L] N T e | Ty -
dynamics and long-term impacts of the PCF when simulating high-latitude systems (Li et al., 2017; Randall ! L [ [P | o A g
et al., 2007). Fortunately, artificial intelligence (Al) optimizes complex earth system processes, captures
nonlinear relationships, and improves model skill.
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