
Forecasting Permafrost Carbon Dynamics in Alaska with GeoCryoAI
Bradley A. Gay1, Neal J. Pastick2, Jennifer D. Watts3, Amanda H. Armstrong4, Kimberley R. Miner1, and Charles E. Miller1

(1) NASA Jet Propulsion Laboratory, California Institute of Technology (2) United States Geological Survey, Earth Resources Observation Science Center (3) Woodwell Climate Research Center (4) NASA Goddard Space Flight Center, University of Maryland Earth System Science Interdisciplinary Center

The GeoCryoAI architecture is constructed with a process-constrained ensemble learning hybridized framework of stacked convolutionally-layered long short-term 
memory-encoded recurrent neural networks optimized with a hyperparameter dictionary and a Bayesian Optimization search algorithm. Feedback nonlinearities are 
emulated with ground-truth teacher forcing and module reconstruction functions (i.e., consolidated tabular time-series layer processing and sequential time-distributed 
convolving layers). We compared teacher forcing and multimodal DA performance among time-delayed naïve persistence (baseline) regression and GeoCryoAI 
simulations of ALT, CH4, and CO2 yielding five error metrics derived from loss functions and predictions during training, validation, and testing over 10 epochs.

Complex non-linear relationships exist between the permafrost thermal state, active layer thickness, and 
terrestrial carbon cycle dynamics in Arctic and boreal Alaska. Frozen soil and carbon-rich permafrost 
characterizes approximately 14 million square kilometers globally, with soil organic carbon stock 
estimated at 130±170 PgC (Hugelius et al., 2014). Thaw-induced carbon release is a climate change 
catalyst and when coupled with anthropogenic-induced warming trigger, accelerate, and sustain a 
positive nonlinear carbon-climate feedback for hundreds of thousands of years (Schuur et al., 2015). The 
variability and uncertainty of thaw-induced carbon release and feedback mechanisms challenge efforts to 
quantify the magnitude, rate, timing, composition, and extent of the permafrost carbon feedback (PCF; 
Miner et al., 2021), further complicating this issue. The PCF is an emerging phenomenon resulting from 
rising global temperatures due to climate change, accelerating permafrost degradation, increasing 
exposure of ancient carbon to microbial decomposition, leading to further amplification of warming.

This research examines three challenges presented by the PCF: the big data problem, the remote 
sensing problem, and the modeling problem. First, (1) we are operating in a space of diametrically 
opposing issues to store, process, and analyze information over space and time, i.e., dearth of field data 
or an over-abundance of data acquired from remote sensing and modeling resources. Due to 
spatiotemporal limitations, instrument constraints, and other challenges in the high latitudes (e.g., 
frequent cloud cover, short summer periods, low illumination angles), (2) the ability to quantify or infer the 
magnitude, rate, and extent of the PCF and subsurface phenomena with high confidence across space 
and time is restricted with remote sensing platforms (Miner et al., 2021; Gay, et al., 2023; Esau et al., 
2023). Moreover, (3) subroutines and interactions governing earth system models vary widely, with many 
overlooking the dynamics and long-term impacts of the PCF when simulating high-latitude systems (Li et 
al., 2017; Randall et al., 2007). Fortunately, artificial intelligence (AI) optimizes complex earth system 
data processing, captures nonlinear relationships, and improves model skill and quantify uncertainty.
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Ongoing research elucidates on the PCF and delayed subsurface phenomena by (1) enrichment, i.e., 
expanding the flexibility and knowledge base of the model with current and future missions to minimize 
loss and improve performance (e.g., AVIRIS-3, UAVSAR, TROPOMI, PREFIRE, NISAR, CRISTAL; UAS 
DSMs; TIR), and (2) development, i.e., generating Circumarctic zero-curtain space-time maps to 
distribute to AK, First Nations/Native Corporations, and the USGS as a JPL-led first-order effort to engage 
leadership and identify cross-sector risks at local, state, and regional levels (e.g., critical infrastructure 
damage, cultural vulnerabilities). Datasets and codebases are distributed in a GitHub repository.

Active Layer Thickness
(cm), 1969-2022

Methane
(nmolCH4m-2s-1), 2011-2022

Carbon Dioxide
(µmolCO2m-2s-1), 2003-2021

Naïve Persistence Model
Test RMSE 1.997 0.884 1.906

GeoCryoAI | Teacher Forcing
Test RMSE 1.327 0.715 0.697

Fractional Reduction -33.55% -19.12% -63.43%
GeoCryoAI | Multimodality

Test MAE 0.708 0.591 0.090
Test MSE 1.014 0.481 0.045

Test MAPE 0.578 0.510 0.156
Test RMSE 1.007 0.694 0.213

Fractional Reduction -49.57%, -24.11% -21.49%, -2.94% -88.82%,-69.44%
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There is an urgent need to both understand how and to what extent permafrost degradation is 
destabilizing the Alaskan carbon balance, and to characterize the feedbacks involved. Therefore, the 
objective of this research is to reconcile these challenges (1-3) with AI, constrain these questions 
realistically in space and time and apply these solutions to scale, simulate, and disentangle the control 
factors and contributing drivers of the PCF signal.

The study domain consists of Alaska (1.723M km2), covering 26.92% of the ABoVE Domain (6.4M km2) 
and 11.88% of the Arctic landscape (14.5M km2). We leverage a hybridized multimodal ensemble 
learning formulation (GeoCryoAI) with 13.1M site-level in situ measurements, 8.06B remote sensing 
observations, and 7.48B modeling outputs across the Alaskan tundra and boreal landscapes. After 
transformation, dimensionality reduction, trend removal, time-delayed supervision, and regression 
analyses, model training initializes 12.4M parameters to simultaneously ingest and analyze high-
dimensional, time-variant multimodal data.

GeoCryoAI simulations mirrored PCF dynamics across Alaska yielding promising results. With every epoch pass, validation loss is reduced. However, though validation 
and testing loss improved for CH4, forecasting the CH4 signal variability was a challenge during teacher forcing (i.e., failed to stabilize during periods of abrupt change of 
CH4 and consistently overestimated CH4 signal). By introducing more data into the framework, this discrepancy was ameliorated with limited changes to validation and 
testing loss. However, new changes emerged, i.e., failed to capture and predict early/initial pulses of thaw and CO2 release. These results suggest the need for (1) more 
discriminant data partitioning (multitemporal coverage complexities, e.g., SAR), (2) further regularization (minimize weight aggregation), (3) more training (increase 
epochs), and/or (4) model is overfitting and may be resolved by simplifying network to aid generalizability. GeoCryoAI introduces ecological memory components and 
effectively captures and learns subtle spatiotemporal complexities as well as abrupt and persistent changes in high-latitude ecosystems by emulating permafrost 
degradation and carbon flux dynamics across Alaska with high precision and minimal loss (RMSE: 1.007cm, 0.694nmolCH4m-2s-1, 0.213µmolCO2m-2s-1). To our 
knowledge, this is the first time AI is applied to ameliorate dichotomy gaps while investigating the PCF phenomena combining ground, remote sensing, and modeling data. 
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RESULTS | SIGNIFICANCE

Our approach overcomes traditional model inefficiencies and resolves spatiotemporal disparities, 
providing a novel methodology for assimilating contemporaneous information on scales from individual 
sites to the Pan-Arctic. GeoCryoAI ingests ~15.8B measurements and observations to learn, simulate, 
and forecast the primary constituents of the PCF with prognostic and retrospective capabilities. This is 
important to corroborate how permafrost degradation and thaw subsidence affect carbon loss by 
conserving energy balance. In addition, this study underscores the significance of thaw-induced climate 
change exacerbated by the PCF and highlights the importance of resolving spatiotemporal variability of 
ALT as a sensitive harbinger of change.
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