17th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS 17) - June 14 – 17, 2021 Session 4.2c: Observations to quantify hot spots and local/urban emissions

Deriving CO, emissions of point sources from OCO-3 XCO, and S5P NO, data

B. Fuentes Andrade, M. Buchwitz, M. Reuter, H. Bovensmann, J.P. Burrows, Institute of Environmental Physics, University of Bremen, Germany

- Carbon dioxide (CO₂) is the most important anthropogenic greenhouse gas leading to climate change. Almost 90% of the anthropogenic CO₂ emissions come from the combustion of fossil fuels, mostly emitted from localized sources.
- Satellite observations are needed to ٠ verify and complement the national greenhouse gas inventories (Paris Agreement).

We are developing methods to obtain CO₂ emission information of localized sources (e.g. power plants and cities) using OCO-3 XCO₂ SAMs and NO₂ slant columns from TROPOMI.

This will also serve as a preparation for the future CO2M mission, which will retrieve both XCO₂ and NO₂ slant columns.

column

Blanca Fuentes Andrade Institute of Environmental Physics (IUP) University of Bremen

University Funded by of Bremen **Deutscher Wetterdienst** Wetter und Klima aus einer Hand

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Institute of Environmental Physics (IUP) University of Bremen

6

Deutscher Wetterdienst Wetter und Klima aus einer Hand

of Bremen

Blanca Fuentes Andrade Institute of Environmental Physics (IUP) University of Bremen

Method to estimate the emission flux

Method to estimate the emission flux

XCO, enhancements

1. Definition of cross sections along track.

- 2. Wind information from ERA5 Reanalysis.
- 3. Filling in missing data: Gaussian approach.
- 4. Computation of cross sectional flux as: $v_{\perp} n_{\perp} M_{co}$

 $\Phi_k = \frac{v_{\perp} n_e M_{CO_2}}{N_A} \sum \Delta l_i (\Delta XCO_2)_i$

- $\boldsymbol{v}_{_{\perp}}\!\!:\!$ wind speed perpendicular to cross section,
- $\rm n_{\rm e}\!:$ number of dry air particles per unit area,
- M_{CO2}: molar mass of CO₂,
- $\rm N_{\rm A}\!:$ Avogadro constant,

 ΔXCO_2 : XCO₂ enhancement in ppm for each pixel i along k-th cross section, ΔI_1 : length of pixel i along k-th cross section.

Institute of Environmental Physics (IUP), University of Bremen FB1, Bremen, Germany Correspondence: O. Schneising (oliver.schneising@iup.physik.uni-bremen.de)

reprint. Discussion started: 14 April 202 Author(s) 2020. CC BY 4.0 License.

Blanca Fuentes Andrade Institute of Environmental Physics (IUP) University of Bremen

University Funded by of Bremen

Results for the Belchatów Power Station (Poland)

First estimation of the flux: 32 ± 19 MtonsCO₂/year

17/04/2020 100 cross sections 50 OCO-3: 09:42 UTC S5P: 12:06 UTC 40 30 51.5°N CO₂/y) 20 (Mto 10 51°N -10 -20 19.5°E 15 Distance to source (km

First estimation of the flux: 27 ± 18 MtonsCO₂/year

- **Significant variation** of the cross-sectional flux as a function of the distance from the source (to be investigated).
- Flux estimation is approximately at overpass time, not an annual average.
- Uncertainty via **standard deviation** (preliminary, to be improved).
- Annual emissions*: 37.6 MtonsCO₂ in 2017, according to the E-PRTR (European Pollutant Release and Transfer Register).

*<u>Typical uncertainty</u>, at a 95% level of confidence, is less than 10% of full scale.

Blanca Fuentes Andrade Institute of Environmental Physics (IUP) University of Bremen