Jet Propulsion Laboratory

California Institute of Technology

Airborne Visible / Inirared Imaging Spectrometer

NEXT GENERANDON

ABoVE STM 9 (2023) San Diego, CA, USA

Regional scale patterns of remotely sensed methane hotspots with respect to Arctic lake change and thermokarst geomorphology

Clayton D. Elder (clayton.d.elder@jpl.nasa.gov), D.R. Thompson, L. Baskaran, I. Nitze, G. Grosse, N. Hasson, M.J. Engram, N. Tyler, K.M. Walter Anthony, and C.E. Miller

Background

Approach

How does lake area change effect CH₄ emissions in the YK Delta, Alaska?

km² surveyed

NASA's Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS-NG) observes CH₄ emission hotspots as enhancements of CH₄ in the air between the ground and the aircraft via absorption of photons in SWIR wavelengths. This study related hotspot detections in 2018 in a 1,800 km² imaged area in the Yukon Kuskokwim Delta to Landsat-derived trends in lakearea change.

K. Delta

AK, USA

Call Sand

- Landsat-derived lake area change analysis (1999 – 2014) by Nitze et al. 2018⁴
- 1 hectare minimum lake size
- 1,355 lakes analyzed
- CH₄ hotspot occurrence rates (hotspot area/buffer area) were determined in a 100 m terrestrial buffer around the lakes
- Buffer shifted 50m inward for lakes w/ > 50% loss

The Arctic is the fastest warming region on the planet, a rate that is 4x the global average and almost never predicted in our most sophisticated earth system models¹. This rapid change holds unforeseen consequences for diverse permafrost landscapes and the permafrost carbon (PC) reservoir. The strength of the PC feedback depends largely on the proportion of mobilized PC that is emitted as methane $(CH_4)^{2,3}$. Landscape heterogeneity, complex biogeochemistry, and high spatiotemporal variability challenge accurate scaling of high latitude CH₄ emission estimates. Thus, we used scale-bridging satellite⁴ and airborne^{5,6} observations to determine whether the observed trend in thaw-driven lake shrinkage⁷ affects CH₄ emissions in the thawing Arctic.

FINDING A) CH_4 hotspots were more likely surrounding the smallest lakes. Lakes were binned equally in 20% tile increments. Letters represent statistically significant ($\alpha = 0.05$) size groups with respect to CH₄ hotspot occurrence.

FINDING A) CH₄ hotspots were more likely surrounding the smallest lakes.

IMPLICATION A) If lake size is a proxy for lake age in thermokarst environments, expanding lakes in the YK Delta may behave more like Yedoma lakes in terms of thermokarst succession and subsequent CH₄ emissions⁸.

FINDING B) CH₄ hotspot occurrence was 25% more likely on shorelines of lakes that have shrank in area from 1999 - 2014 (p < 0.005)

IMPLICATION B) Lake surface water decline may promote wetland creation in draining lake basis with conditions favorable for greater CH₄ emissions. (Organic rich lowland successional pathway)²

environmental drivers. shrank during the last 23 years.

1) Rantanen, Mika, et al. Communications Earth & Environment (2022). 2) Turetsky, Merritt R., et al. Nature Geoscience (2020). 3) Miner, Kimberley R., et al. Nature Reviews Earth & Environment (2022). 4) Nitze, Ingmar, et al. Nature communications (2018). 5) Elder, Clayton D., et al. Geophysical Research Letters (2020). 6) Elder, Clayton D., et al. Global Biogeochemical Cycles (2021). 7) Webb, Elizabeth E., et al. Nature Climate Change (2022). 8) Walter Anthony, Katey M., et al. Environmental Research Letters (2021).

Lake area size bins (ha), binned every 20th %tile

FINDING B) CH₄ hotspot occurrence was 25% more likely on shorelines of lakes that have shrank in area from 1999 - 2014 (p < **0.005)**. Histogram = distribution of lake change. Scatter plot = hotspot occurrence by feature.

Arctic CH₄ emissions are difficult to quantify, but AVIRIS-NG is providing a novel perspective on their key

2. In a survey of 1,400 lakes in the YK Delta, Alaska, CH₄ hotspots are more likely to occur near lakes that have

