Comparison of operational and scientific Sentinel-5-Precursor XCH₄ retrievals over methane emission hotspot areas

M Buchwitz¹, O Schneising¹, S Vanselow¹, M Reuter¹, H Bovensmann¹, J P Burrows¹, I Aben², J Landgraf², A Lorente², T Borsdorff², C Retscher³

(1) Institute of Environmental Physics (IUP), University of Bremen, 28334 Bremen, Germany
(2) SRON Netherlands Institute for Space Research, 3584 CA Utrecht, the Netherlands
(3) Directorate of Earth Observation Programmes, European Space Agency (ESA), ESRIN, 00044 Frascati, Italy

- Methane (CH₄) is an important atmospheric greenhouse gas (GHG) with many localized emission sources
- Sentinel-5-Precursor (S5P) provides XCH₄ (= column-averaged methane mole fractions) at good spatial (7 km) and temporal (daily) resolution
- S5P XCH₄ permits to detect areas of locally elevated methane, which can be used to quantify emissions, e.g., from oil and gas fields
- Within ESA project Methane+ we compare S5P XCH₄ data products over areas with locally elevated XCH₄:
 - OPER: The operational ESA/Copernicus product (Hu et al., 2016)
 - WFMD: The scientific WFMD algorithm product (Schneising et al., 2019, 2020)
 - OPERbeta: Beta version of next operational version (Lorente et al., 2021)
Comparison of operational and scientific Sentinel-5-Precursor XCH₄ retrievals over methane emission hotspot areas

TGD = Galkynysh & Dauletabad gas and oil fields, Turkmenistan

10-April-2018

OPER: recommended filter:

OPER: relaxed filter:

Methane pattern similar (e.g., (yellow) emission plume) but difference pattern complex and not well understood
Comparison of operational and scientific Sentinel-5-Precursor XCH₄ retrievals over methane emission hotspot areas

TGD = Galkynysh & Dauletabad gas and oil fields, Turkmenistan
Comparison of operational and scientific Sentinel-5-Precursor XCH$_4$ retrievals over methane emission hotspot areas

CAL = Central Valley & surrounding, California, USA

15-October-2018

OPER: recommended filter:

OPER: relaxed filter:

OPER (much) sparser, even with relaxed quality filter
Methane pattern similar but difference pattern complex and not well understood
Comparison of operational and scientific Sentinel-5-Precursor XCH₄ retrievals over methane emission hotspot areas

SSU = South Sudan, Africa
January-October 2018
Comparison of operational and scientific Sentinel-5-Precursor XCH$_4$ retrievals over methane emission hotspot areas

<table>
<thead>
<tr>
<th>No</th>
<th>Target</th>
<th>Day in 2018</th>
<th>Orbit</th>
<th>Nobs</th>
<th>WFMD</th>
<th>OPER</th>
<th>OPERbeta</th>
<th>OPER</th>
<th>OPERbeta</th>
<th>Diff (OPER-WFMD) ± StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TGD</td>
<td>10-Apr</td>
<td>2539</td>
<td>7050</td>
<td>3718</td>
<td>3749</td>
<td>0.86</td>
<td>0.89</td>
<td>-8.0 ± 7.0</td>
<td>-15.3 ± 5.9</td>
</tr>
<tr>
<td>2</td>
<td>-“-”</td>
<td>8-May</td>
<td>2936</td>
<td>7564</td>
<td>2469</td>
<td>2918</td>
<td>0.63</td>
<td>0.76</td>
<td>-11.2 ± 14.4</td>
<td>-18.1 ± 11.4</td>
</tr>
<tr>
<td>3</td>
<td>-“-”</td>
<td>4-Jun</td>
<td>3319</td>
<td>9209</td>
<td>5190</td>
<td>5342</td>
<td>0.77</td>
<td>0.79</td>
<td>-0.1 ± 8.5</td>
<td>-5.7 ± 8.1</td>
</tr>
<tr>
<td>4</td>
<td>CAL</td>
<td>15-Oct</td>
<td>5213</td>
<td>8699</td>
<td>1576</td>
<td>1981</td>
<td>0.49</td>
<td>0.60</td>
<td>-10.4 ± 15.9</td>
<td>-13.8 ± 11.5</td>
</tr>
<tr>
<td>5</td>
<td>SSU</td>
<td>1-Jan</td>
<td>1136</td>
<td>21780</td>
<td>8491</td>
<td>10657</td>
<td>0.60</td>
<td>0.65</td>
<td>-4.2 ± 10.4</td>
<td>-4.7 ± 8.9</td>
</tr>
<tr>
<td>6</td>
<td>-“-”</td>
<td>9-Aug</td>
<td>4257</td>
<td>8742</td>
<td>1476</td>
<td>1592</td>
<td>0.90</td>
<td>0.93</td>
<td>-4.7 ± 8.4</td>
<td>-4.7 ± 7.9</td>
</tr>
<tr>
<td>7</td>
<td>-“-”</td>
<td>7-Oct</td>
<td>5094</td>
<td>6370</td>
<td>1652</td>
<td>1998</td>
<td>0.77</td>
<td>0.78</td>
<td>+0.7 ± 17.8</td>
<td>-0.9 ± 19.1</td>
</tr>
</tbody>
</table>

Number of observations:
- OPERbeta > OPER
- Still: WFMD more data

R:
- Slightly higher for OPERbeta

Mean difference:
- OPERbeta typically lower cmp to OPER & WFMD
- Negative bias w.r.t. WFMD larger than before
- StdDev of difference:
 - Mostly smaller now

qa > 0.5 (recommended filter)

OPERbeta in slightly better agreement with WFMD compared to OPER for Nobs and StdDev but not for regional mean difference. Overall no dramatic change esp. w.r.t. spatial pattern and coverage.