
A new Remote Sensing Network for London Carbon Emissions

Hartmut Boesch^{1,6}, Neil Humpage^{1,6}, Robbie Ramsay², Andrew Gray², Jack Gillespie², Paul Palmer^{3,6}, Jerome Woodwark³, Mat Williams^{2,6}, Frank Hase⁴, Gregory Osterman⁵

¹University of Leicester
²NERC FSF, University of Edinburgh
³School of GeoSciences, University of Edinburgh
⁴KIT, Karlsruhe
⁵NASA JPL, Pasadena
⁶NERC National Centre for Earth Observation NCEO

- Established a new remote sensing network in London for automatic and simultaneous observations of Greenhouse Gases, Air pollutants and Aerosols
- The goal is to critical evaluate the performance of satellites over cities and to joint exploit ground-based and satellite observations via Lagrangian Dispersion Modelling
- Network is fully operational and first data is now acquired and processed

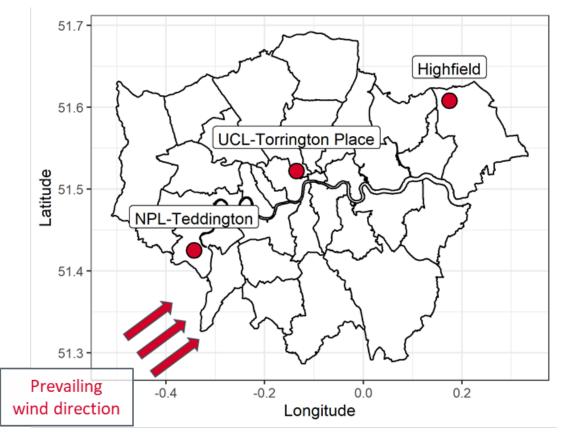
London Remote-Sensing Observatory for Carbon and Air Quality

UNIVERSITY OF LEICESTER

Why Cities ?

- Cities and urban areas produce majority of carbon emissions
- Focus of political decisions made for climate mitigation with often ambitious targets (e.g. C40 cities, London net zero target by 2050)
- Cities represent important but not well understood component of regional carbon cycle with interlaced anthropogenic and biogenic fluxes, emission hotspots, lateral fluxes and a strong link to air quality and human behavior

Road Transport Emissions for London

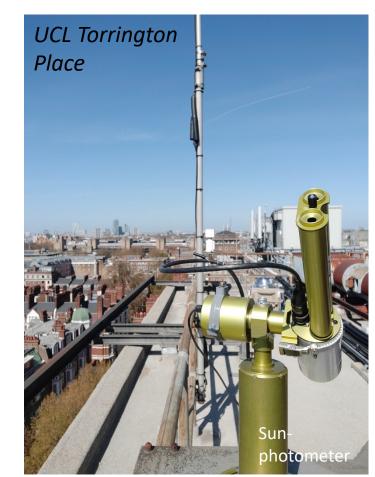


⁽Credit: P. Ciais, LSCE, CarbonSat presentation)

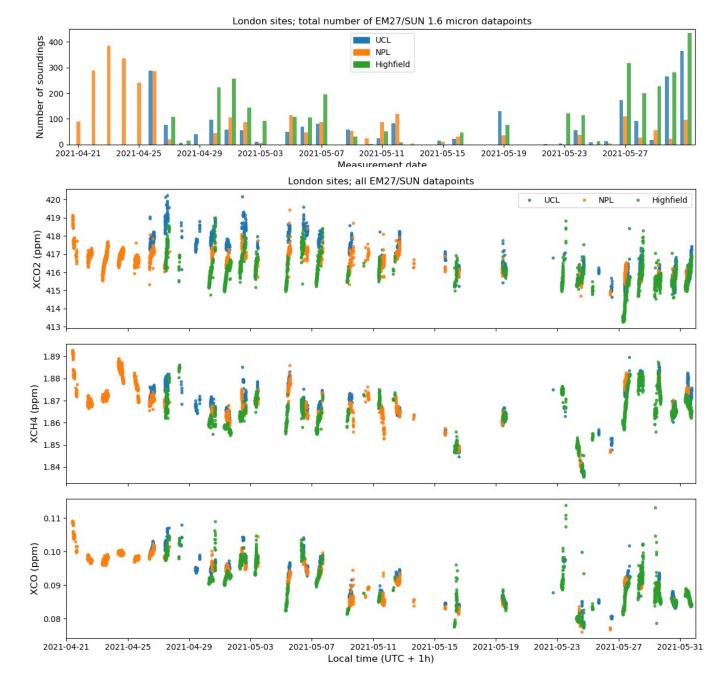
Ground-based remote sensing network in London

- New network with 3 sites across London along prevailing wind direction
- Instrument Suite for simultaneous observation of GHGs together with air pollutants and aerosols

Instrument		Species	
Bruker EM27/SUN (COCCON)		CO ₂ , CH ₄ , CO	
Airyx MAX-DOAS	outdoor	NO ₂ , and other trace gases	
Cimel Sunphotometer (Aeronet)		Aerosols (AOD, Angstroem)	

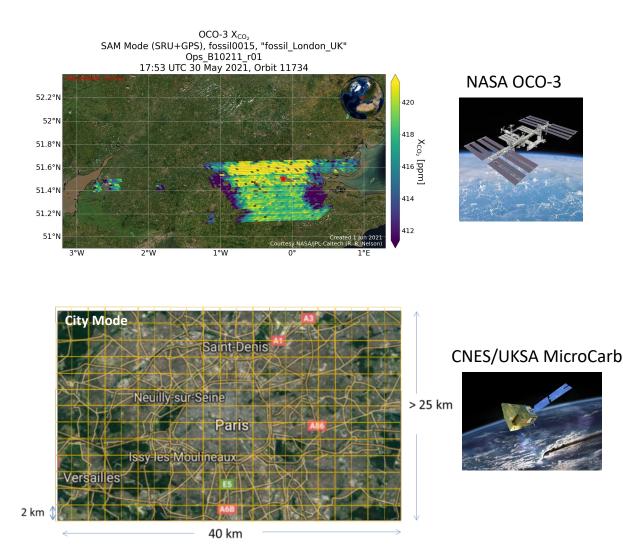


Network Site Locations



Site	Latitude	Longitude	Height above sea level
NPL Teddington	51.426 N	0.345 W	20 m
UCL Torrington Place	51.523 N	0.132 W	60 m
Highfield Tower	51.608 N	0.175 E	120 m

First look at EM27SUN Data


- All instruments are operational and measure routinely thanks to automatization and weather cover
- Good coverage even in cloudy periods
- Interpretation will be guided by meteorological data and transport modelling

UNIVERSITY OF LEICESTER

Outlook

- Our network will initially operate for duration of 1 year
- Combined GHG + AQ dataset will be used to evaluate the performance of satellites over cities (OCO-2, OCO-3, GOSAT, TROPOMI)
 - Biases introduced by aerosols and covariance of NO₂ and CO₂
- Joint exploitation of ground-based and satellite observations via Lagrangian Dispersion Modelling
- Goal is to repeat London Network for future missions such as MicroCarb and Copernicus CO2M

