Estimation of anthropogenic CO2 emission from Kanto region, include Tokyo Y. Arai⁽¹⁾, R. Imasu⁽¹⁾, Q. Wang⁽¹⁾, H. Kondo⁽²⁾

1: Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, 2: National Institute of Advanced Industrial Science and Technology (AIST)

and sinks from plant activities

- In Kanto region, CO₂ emissions from anthropogenic and plant activities are complicated (Fig.1, Fig.2).
- It has been reported that there are problems with CO_2 emission sources and sinks for many models.
- Attempts have already been made to improve the emission sources and sinks of CO₂ from plant activity (Wang et al., 2021).
- This study focuses on improving anthropogenic CO_2 emissions. Created by processing [National Land Information (Urban area land use subdivision mesh data, Power generation facility data)] (Ministry of Land, Infrastructure, Transport and Tourism of Japan)

(https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html, https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-P03.html)

About anthropogenic CO₂ emissions

Fig.3: Monthly anthropogenic CO₂ emissions within the model area

- The time scale of emissions differs depending on the each inventory (such as monthly average emissions, annual average emissions) (Fig.3).
- Grid size depends on each inventory (Fig.4).
- ODIAC (v2019, TIFF) has the most detailed grid size. However, since ODIAC is monthly average data, EAGrid 2000 JAPAN, which is the amount of emissions for each month and each time, had been used in this study.

EAGrid: The East Asian Air Pollutant Emissions Grid Database (Kannari et al., 2007)

Fig.4: The currently available CO₂ emission inventories in 2000 for model calculation

About AIST-MM model and the method to estimate CO₂ emission

CONTRAIL: Comprehensive Observation Network for TRace gases by AIrLiner (Machida et al., 2008)

Assimilation using GOSAT observation, DATE: 2018/03/25 13:00 (JST)

Fig.7: Eesemble spread (anthropogenic CO₂ emission)

 $(CO_2 \text{ column mass})$

GOSAT observations exist in the northern part of the region (Fig.6), but anthropogenic CO_2 emissions were hardly improved due to the small spread of CO_2 column mass concentration errors (Fig.8).

Anthropogenic CO_2 emission correction rate around Tokyo Bay has been larger than other area due to the relationship among observation position (Fig.6) and the spread of anthropogenic CO_2 emission errors (Fig.7) and the spread of CO_2 column mass concentrations errors (Fig.8).

Fig.9: CO₂ emission correction rate

141E

Assimilation using OCO-2 observation, DATE: 2018/03/14 13:00 (JST)

Fig.11: Eesemble spread (anthropogenic CO₂ emission)

DATA: ENSEMBLE SPREAD (COLUMN CO2 CONCENTRATION) DATE(JST): MAR. 14, 2018 at 13:00, OBS: SATELLITE(OCO-2) John of the strength of the strengt of the strength of the strength of the stren

(CO₂ column mass)

Anthropogenic CO₂ emissions were improved due to the relationship among observation position (Fig.10) and the spread of
anthropogenic CO₂ emission errors (Fig.11) and the spread of CO₂ column mass concentrations errors (Fig.12). Espeially, as there were many OCO-2 observation numbers, anthropogenic CO₂ emissions were improved strongly.

As OCO-2 observations didn't exist in the western and southern part of the region (Fig.10), anthropogenic CO_2 emissions in the area weren't improved.

Assimilation using CONTRAIL observation or in-situ observation,

DATE: 2018/03/04 11:00 (JST)

Anthropogenic CO_2 emissions were improved very weakly in case to use CONTRAIL observations (fig.14, fig.15). Anthropogenic CO_2 emissions were improved very strongly in case to use in-situ observations (fig.16, fig.17).

It was because that anthropogenic CO_2 emissions, which were given errors, existed almost near ground surface. So the higher observation altitude was, the smaller the spread of the CO_2 concentration error was.

- It has become possible to estimate anthropogenic CO₂ emissions by assimilation calculation using various observations.
- The parameters used in the assimilation calculation must be adjusted.
- The AIST-MM model itself needs further improvement.