
METHANE+

A.Lorente, T. Borsdorff, I. Aben (SRON), M.Buchwitz, O.Schneising, Steffen Vanselow (IUP), Brian Kerridge, Richard Siddans, Diane Knappett,Lucy Ventress (RAL),Cyril Crevoisier,Nicolas Meilhac (LMD),Julia Marshall,Tonatiuh Nunez Ramirez (MPI-BGC), Jacob van Peet, Sander Houweling (VU), Christian Retscher (ESA)

 Methane (CH₄) concentrations show large variations in time which in large part are not understood in detail (yet)

TROPOMI S5P

METOP-B IASI

 Aim to combine SWIR and TIR sat. observations (2 years) in global inversions (and as sat. product) to separate different sources and sink (OH)

CH4 (250 hPa)

1753.1767.1780.1793.1807.1820.1833.1847.1860.1873.1887.1900.1913.1927.1940. p

 Look at 3 cases to determine added-value using both SWIR and TIR data

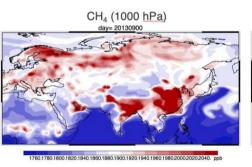


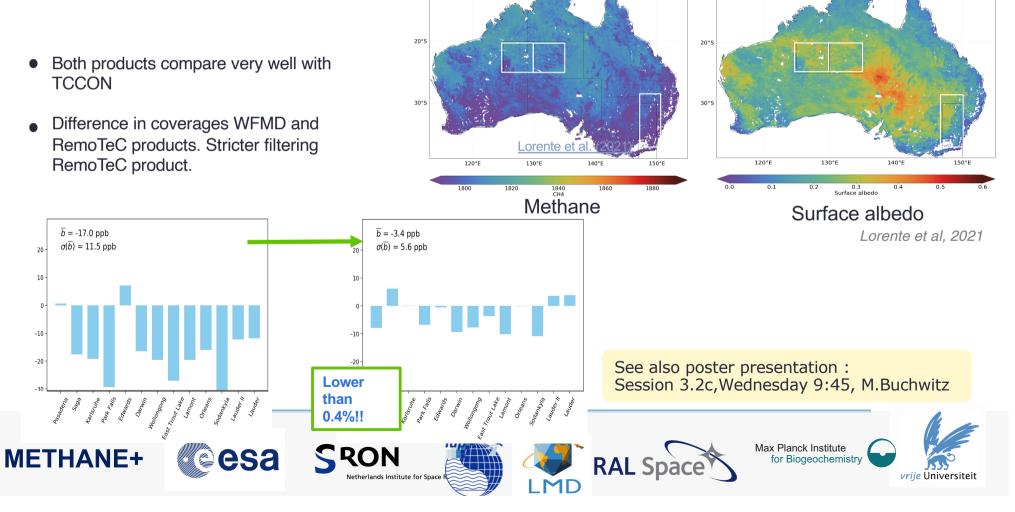
Figure 3: TM5 simulated CH4 over Asia at 1000 hPa and 250 hPa

METHANE+ STUDY OBJECTIVES:

- (support to) algorithm development and generation of CH4 products for the WP-2000 SWIR from TROPOMI, TIR from IASI-B/CrIS, and joint SWIR-TIR from TROPOMI and IASI-B/CrIS.
 - Assess the quality of the TROPOMI, IASI-B and CrIS CH4 retrieval: comparing algorithms and validation using independent 'ground'-based data.
- Investigate the **added value** of combining SWIR and TIR in regional case studies
- **NP-3000** Infer global sources and sinks of CH4 from inverse modelling of 2 years of TROPOMI and IASI-B (and/or CrIS) data, investigating the added value of the combined use of SWIR and TIR

WP-4000

Formulate a road map for future CH4 remote sensing based on the outcomes of this study as well as parallel studies covering the use of methane from TROPOMI across the full range of scales.



METHANE+

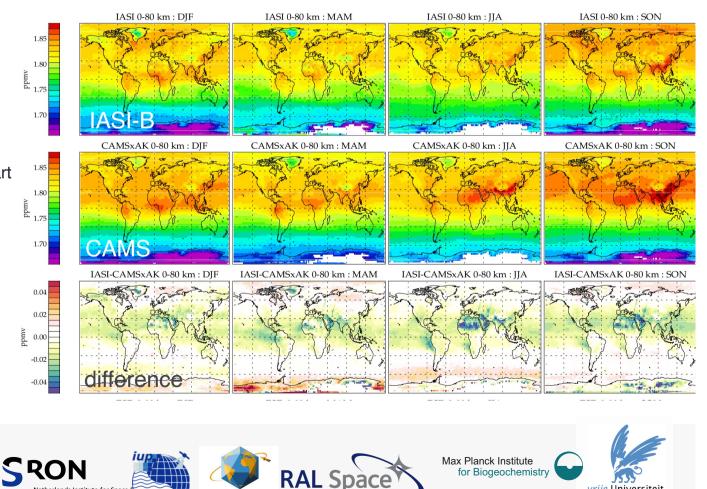
TROPOMI CH₄ SWIR dataproducts and comparisons

- Operational and scientific beta RemoTeC product from SRON
- WFMD IUP dataproduct

Intercompare and use TCCON and GOSAT data for validation and comparisons \rightarrow improve dataproducts

METHANE+

IASI CH₄ TIR dataproducts and comparisons


- IASI-B products from RAL and LMD
- Validation/comparisons with CAMS, TCCON, Atom-4, AirCore •

Global distribution and seasonal variation agree well with CAMS (surface data assimilated)

Systematic differences could be due in part to representation stratospheric N2O, CH4 and water vapor interference

METHANE+

esa

vrije Universiteit

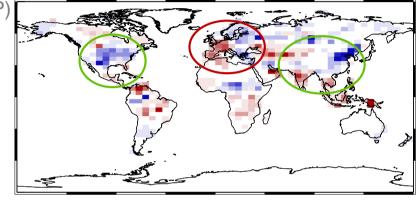
RAL IASI-B CH4 column vs CAMS

METHANE+ Global inverse modelling TROPOMI CH₄

- Inverse modelling systems: TM5-4DVAR, Jena CarboScope •
- TROPOMI Datasets: Operational, SRON-scientific, WFMD (iUP) •
- Inversion set-up close the CAMS CH4 reanalysis (GOSAT)
- Shown here: 201807 201906 (2 years in the pipeline)

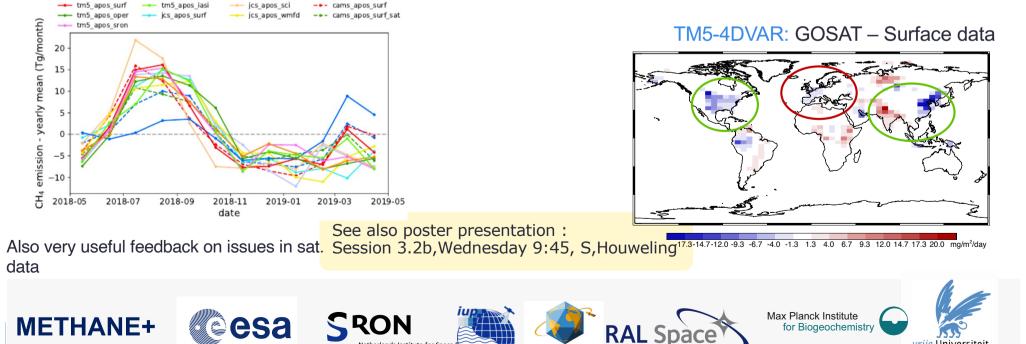
ics apos oper

cams aprior


Discrepancy with GOSAT over Europe: To be investigated further in the VERIFY-IG³IS/COCO2 national experiment

Inversion comparison: Seasonality of global emissions

tm5 apos wfmd


tm5 apriori

-17.3-14.7-12.0 -9.3 -6.7 -4.0 -1.3 1.3 4.0 6.7 9.3 12.0 14.7 17.3 20.0 mg/m²/day

vrije Universiteit

