Close Window

Resolving the carbon-climate feedback potential of wetland CO2 and CH4 fluxes in Alaska

Shuang Ma,  Jet Propulsion Laboratory / Caltech,  shuang.ma@jpl.nasa.gov (Presenter)
Alexis Anthony Bloom,  Jet Propulsion Lab, California Institute of Technology,  abloom@jpl.nasa.gov
Jennifer Dawn Watts,  Woodwell Climate Research Center,  jwatts@woodwellclimate.org
Gregory Quetin,  University of California, Santa Barbara,  gquetin@gmail.com
Donatella Zona,  San Diego State University,  dzona@sdsu.edu
Eugenie Euskirchen,  University of Alaska, Fairbanks,  seeuskirchen@alaska.edu
Alexander Norton,  Jet Propulsion Laboratory/California Institute of Technology,  alexander.j.norton@jpl.nasa.gov
Yi Yin,  Caltech,  yiyin@caltech.edu
Paul A Levine,  JPL,  paul.a.levine@jpl.nasa.gov
Renato K Braghiere,  Caltech/NASA JPL,  renato.k.braghiere@jpl.nasa.gov
Nicholas Parazoo,  JPL,  nicholas.c.parazoo@jpl.nasa.gov
John R. Worden,  JPL,  john.r.worden@jpl.nasa.gov
David Schimel,  JPL,  david.schimel@jpl.nasa.gov
Charles Miller,  NASA JPL,  charles.e.miller@jpl.nasa.gov

Boreal Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high-latitude ecosystems. The carbon-climate (C-climate) feedback potential of northern high-latitude remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2 and methane (CH4) fluxes. While CH4 fluxes account for a smaller component of the C balance, the climatic impact of CH4 outweighs CO2 (28 times larger Global Warming Potential (GWP) on a 100-year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2 and CH4. We jointly constrain a terrestrial biosphere model with in situ CO2 and CH4 flux observations at seven eddy covariance sites using a data-model integration approach to resolve the integrated environmental controls on land-atmosphere CO2 and CH4 exchanges in Alaska. Based on the combined CO2 and CH4 flux responses, we find that 1970-present climate trends will induce positive carbon-climate feedback at all tundra sites, and negative carbon-climate feedback at the boreal and shrub fen sites. The positive C-climate feedback at the tundra sites is predominantly driven by increased CH4, while the negative C-climate feedback at the boreal site is predominantly driven by decreased CO2 (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2 and CH4 biogeochemical processes – and their associated climatic sensitivities – for resolving the sign and magnitude of high-latitude ecosystem C-climate feedback in the coming decades.

Associated Project(s): 

Poster Location ID: 2-29

Presentation Type: Poster

Session: Poster Session 2

Session Date: Wed (May 10) 5:15-7:15 PM

CCE Program: TE

Close Window