Close Window

Investigating submesoscale biophysical dynamics on the Gulf Stream front

Patrick Gray,  Duke University,  pgrayobx@gmail.com (Presenter)
Ivan Savleyev,  Naval Research Lab,  ivan.savelyev@nrl.navy.mil
Kate Smith,  Wake Forest University,  smitka20@wfu.edu
Anna Windle,  UMCES,  awindle@umces.edu
Jessica Gronniger,  Duke University,  jessica.gronniger@duke.edu
Marina Lévy,  Sorbonne Université,  marina.levy@locean.ipsl.fr
Nicolas Cassar,  Duke University,  nicolas.cassar@duke.edu
Emmanuel Boss,  University of Maine,  emmanuel.boss@maine.edu
Guillaume Bourdin,  University of Maine,  guillaume.bourdin@maine.edu
Yoav Lehahn,  University of Haifa,  ylehahn@univ.haifa.ac.il
Sheri Floge,  Wake Forest University,  floges@wfu.edu
Greg Silsbe,  UMCES,  gsilsbe@umces.edu
Zackary Johnson,  Duke University,  zackary.johnson@duke.edu
Dana Hunt,  Duke University,  dana.hunt@duke.edu
Julian Dale,  Duke University,  julian.dale@duke.edu
David Johnston,  Duke University,  david.johnston@duke.edu

The impact of fine scale (0.1-10km) ocean physics on phytoplankton biomass and diversity is poorly understood. By the very nature of the scale at which these processes operate, they are missing from global models and challenging to detect in standard satellite remote sensing products. Yet small scale biophysical interactions may be an important part of the dynamics that power the ocean’s biological carbon pump, sustain the foundation of marine ecosystems, and maintain phytoplankton diversity. To better understand these interactions we conducted 70 transects over two years across the Gulf Stream front just downstream of the current’s separation point at Cape Hatteras, N.C. On all transects we collected tow-yo profiles of physical properties and ADCP measurements at high resolution to describe the physical environment. On a subset of transects we collected above-water radiometry, continual flow-through based inherent optical properties (IOPs), high performance liquid chromatography, and flow cytometry to describe the biomass and composition of phytoplankton. Using satellite data and our two years of detailed in-situ observations we assess the basic seasonality and phenology on the front, demonstrate the mesoscale context is controlled by frontal eddies, and identify submesoscale configurations including diapycnal mixing, decoupling of physics and biology, and vertical frontal circulations. We use both theory and observations to interpret the biogeochemical impacts of these transient scenarios.

Poster: Poster_Gray_2-33_148_35.pdf 

Associated Project(s): 

Poster Location ID: 2-33

Presentation Type: Poster

Session: Poster Session 2

Session Date: Wed (May 10) 5:15-7:15 PM

CCE Program: OBB

Close Window